Computing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics

We develop a simple and efficient algorithm to compute Riemann---Roch spaces of divisors in general algebraic function fields which does not use the Brill-Noether method of adjoints or any series expansions. The basic idea also leads to an elementary proof of the Riemann-Roch theorem. We describe the connection to the geometry of numbers of algebraic function fields and develop a notion and algorithm for divisor reduction. An important application is to compute in the divisor class group of an algebraic function field.

[1]  D. Le Brigand,et al.  Algorithme de Brill-Noether et codes de Goppa , 1988 .

[2]  Steven D. Galbraith,et al.  Arithmetic on superelliptic curves , 2002 .

[3]  Emil J. Volcheck Computing in the jacobian of a plane algebraic curve , 1994, ANTS.

[4]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[5]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[6]  W. Fulton Algebraic curves , 1969 .

[7]  Gaétan Haché,et al.  Computation in Algebraic Function Fields for Effective Construction of Algebraic-Geometric Codes , 1995, AAECC.

[8]  J. Coates,et al.  Construction of rational functions on a curve , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Shinji Miura,et al.  Finding a Basis of a Linear System with Pairwise Distinct Discrete Valuations on an Algebraic Curve , 2000, J. Symb. Comput..

[10]  Mark van Hoeij An algorithm for computing the Weierstrass normal form , 1995, ISSAC '95.

[11]  M. Noether,et al.  Rationale Ausführung der Operationen in der Theorie der algebraischen Functionen , 1884 .

[12]  F. Torres,et al.  Algebraic Curves over Finite Fields , 1991 .

[13]  H. Weber,et al.  Theorie der algebraischen Functionen einer Veränderlichen. , 1882 .

[14]  Antonio Campillo,et al.  Algebroid Curves in Positive Characteristic , 1980 .

[15]  Ming-Deh A. Huang,et al.  Counting Points on Curves over Finite Fields , 1998, J. Symb. Comput..

[16]  Arjen K. Lenstra Factoring Multivariate Polynomials over Finite Fields , 1985, J. Comput. Syst. Sci..

[17]  Mark van Hoeij,et al.  Rational Parametrizations of Algebraic Curves Using a Canonical Divisor , 1997, J. Symb. Comput..

[18]  H. W. Lenstra,et al.  Approximatting rings of integers in number fields. , 1994 .

[19]  Michael E. Pohst,et al.  On Integral Basis Reduction in Global Function Fields , 1996, ANTS.

[20]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[21]  M. Nöther,et al.  Ueber die algebraischen Functionen und ihre Anwendung in der Geometrie , 1874 .

[22]  Wolfgang M. Schmidt,et al.  Construction and estimation of bases in function fields , 1991 .

[23]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[24]  M. Pohst Computational Algebraic Number Theory , 1993 .

[25]  Friedrich Karl Schmidt,et al.  Analytische Zahlentheorie in Körpern der Charakteristik p , 1931 .

[26]  Paul M. Cohn Algebraic Numbers and Algebraic Functions , 1991 .

[27]  K. Hensel,et al.  Theorie der algebraischen Funktionen einer Variabeln und ihre Anwendung auf algebraische Kurven und Abelsche Integrale , 1903 .

[28]  Sachar Paulus,et al.  Lattice Basis Reduction in Function Fields , 1998, ANTS.