Computational Systems Biology

The recent confluence of high throughput methodology for biological data gathering, genome-scale sequencing, and computational processing power has driven a reinvention and expansion of the way we identify, infer, model, and store relationships between molecules, pathways, and cells in living organisms. In Computational Systems Biology, expert investigators contribute chapters which bring together biological data and computational and/or mathematical models of the data to aid researchers striving to create a system that provides both predictive and mechanistic information for a model organism. The volume is organized into five major sections involving network components, network inference, network dynamics, function and evolutionary system biology, and computational infrastructure for systems biology. As a volume of the highly successful Methods in Molecular Biology series, this work provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Comprehensive and up-to-date, Computational Systems Biology serves to motivate and inspire all those who wish to develop a complete description of a biological system.

[1]  D. Landsman,et al.  Multiple independent evolutionary solutions to core histone gene regulation , 2006, Genome Biology.

[2]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[3]  Petri Auvinen,et al.  Bayesian Hierarchical Model for Correcting Signal Saturation in Microarrays Using Pixel Intensities , 2006, Statistical applications in genetics and molecular biology.

[4]  J. Collins,et al.  Size matters: network inference tackles the genome scale , 2007, Molecular systems biology.

[5]  M. Wall,et al.  Design of gene circuits: lessons from bacteria , 2004, Nature Reviews Genetics.

[6]  R. Young,et al.  Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays , 2004, Nature Genetics.

[7]  Fang-Xiang Wu,et al.  Modeling Gene Expression from Microarray Expression Data with State-Space Equations , 2003, Pacific Symposium on Biocomputing.

[8]  K. F. Tipton,et al.  Biochemical systems analysis: A study of function and design in molecular biology , 1978 .

[9]  Brian D. Dynlacht,et al.  Regulation of transcription by proteins that control the cell cycle , 1997, Nature.

[10]  M. Vidal,et al.  Yeast forward and reverse 'n'-hybrid systems. , 1999, Nucleic acids research.

[11]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[12]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[13]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[14]  E. Klipp,et al.  Biochemical networks with uncertain parameters. , 2005, Systems biology.

[15]  H. Iba,et al.  Inference of gene regulatory networks by means of dynamic differential Bayesian networks and nonparametric regression. , 2004, Genome informatics. International Conference on Genome Informatics.

[16]  Eric H. Davidson,et al.  Gene activity in early development , 1968 .

[17]  H Niemann,et al.  Identification and analysis of eukaryotic promoters: recent computational approaches. , 2001, Trends in genetics : TIG.

[18]  K. Kinzler,et al.  Serial Analysis of Gene Expression , 1995, Science.

[19]  Martha L Bulyk,et al.  DNA microarray technologies for measuring protein-DNA interactions. , 2006, Current opinion in biotechnology.

[20]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[21]  Xin Chen,et al.  TRANSFAC: an integrated system for gene expression regulation , 2000, Nucleic Acids Res..

[22]  William Stafford Noble,et al.  Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.

[23]  Kathleen Marchal,et al.  SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms , 2006, BMC Bioinformatics.

[24]  Rachel B. Brem,et al.  The landscape of genetic complexity across 5,700 gene expression traits in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Maria Jesus Martin,et al.  The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 , 2003, Nucleic Acids Res..

[26]  Arpad Kelemen,et al.  Differential and trajectory methods for time course gene expression data , 2005, Bioinform..

[27]  Jens Timmer,et al.  Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge , 2007, BMC Systems Biology.

[28]  Gustavo Stolovitzky,et al.  Reconstructing biological networks using conditional correlation analysis , 2005, Bioinform..

[29]  Martha L Bulyk,et al.  Analysis of sequence specificities of DNA-binding proteins with protein binding microarrays. , 2006, Methods in enzymology.

[30]  A. Hartemink Reverse engineering gene regulatory networks , 2005, Nature Biotechnology.

[31]  R. Durbin,et al.  The Sequence Ontology: a tool for the unification of genome annotations , 2005, Genome Biology.

[32]  John J. Tyson,et al.  Classification of instabilities in chemical reaction systems , 1975 .

[33]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[34]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[35]  Olivier Bodenreider,et al.  Global similarity and local divergence in human and mouse gene co-expression networks , 2006, BMC Evolutionary Biology.

[36]  Xinkun Wang,et al.  An effective structure learning method for constructing gene networks , 2006, Bioinform..

[37]  H. Sauro,et al.  Conservation analysis in biochemical networks: computational issues for software writers. , 2004, Biophysical chemistry.

[38]  Amy K. Schmid,et al.  A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell , 2007, Cell.

[39]  Balth van der Pol Jun Docts. Sc.,et al.  LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart , 1928 .

[40]  H. Sauro Moiety-conserved cycles and metabolic control analysis: problems in sequestration and metabolic channelling. , 1994, Bio Systems.

[41]  David Tuck,et al.  Characterizing disease states from topological properties of transcriptional regulatory networks , 2006, BMC Bioinformatics.

[42]  E. Koonin,et al.  Conservation and coevolution in the scale-free human gene coexpression network. , 2004, Molecular biology and evolution.

[43]  Paul P. Wang,et al.  Advances to Bayesian network inference for generating causal networks from observational biological data , 2004, Bioinform..

[44]  Dirk Drasdo,et al.  Gene network inference from incomplete expression data: transcriptional control of hematopoietic commitment , 2006, Bioinform..

[45]  Tomoyuki Higuchi,et al.  Estimating time-dependent gene networks from time series microarray data by dynamic linear models with Markov switching , 2005, 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05).

[46]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[47]  Richard Bonneau,et al.  The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo , 2006, Genome Biology.

[48]  Jun S. Liu,et al.  Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. , 1993, Science.

[49]  Joseph T. Chang,et al.  Spectral biclustering of microarray data: coclustering genes and conditions. , 2003, Genome research.

[50]  Marc Vidal,et al.  Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis , 2005, Nature.

[51]  Ram Samudrala,et al.  Bioverse: functional, structural and contextual annotation of proteins and proteomes , 2003, Nucleic Acids Res..

[52]  T. Wolfsberg,et al.  Global Regulation by the Yeast Spt10 Protein Is Mediated through Chromatin Structure and the Histone Upstream Activating Sequence Elements , 2005, Molecular and Cellular Biology.

[53]  C Reder,et al.  Metabolic control theory: a structural approach. , 1988, Journal of theoretical biology.

[54]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[55]  Diego di Bernardo,et al.  Inference of gene regulatory networks and compound mode of action from time course gene expression profiles , 2006, Bioinform..

[56]  D A Fell,et al.  Covalent modification and metabolic control analysis. Modification to the theorems and their application to metabolic systems containing covalently modifiable enzymes. , 1990, European journal of biochemistry.

[57]  Herbert M. Sauro,et al.  Conservation analysis of large biochemical networks , 2006, Bioinform..

[58]  John J. Tyson,et al.  The Dynamics of Feedback Control Circuits in Biochemical Pathways , 1978 .

[59]  J. Stucki,et al.  Stability analysis of biochemical systems--a practical guide. , 1978, Progress in biophysics and molecular biology.

[60]  Bart De Moor,et al.  Biclustering microarray data by Gibbs sampling , 2003, ECCB.

[61]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[62]  Roded Sharan,et al.  Discovering statistically significant biclusters in gene expression data , 2002, ISMB.

[63]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[64]  Ana Rute Neves,et al.  The intricate side of systems biology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Edda Klipp,et al.  Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data , 2006, Theoretical Biology and Medical Modelling.

[66]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[67]  J. Monod,et al.  [Operon: a group of genes with the expression coordinated by an operator]. , 1960, Comptes rendus hebdomadaires des seances de l'Academie des sciences.

[68]  Mark Bieda,et al.  Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. , 2006, Genome research.

[69]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[70]  Matteo Pellegrini,et al.  Prolinks: a database of protein functional linkages derived from coevolution , 2004, Genome Biology.

[71]  Eugene V Koonin,et al.  Evolutionary significance of gene expression divergence. , 2005, Gene.

[72]  A Vázquez,et al.  The topological relationship between the large-scale attributes and local interaction patterns of complex networks , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[74]  Rodger Staden,et al.  Methods for calculating the probabilities of finding patterns in sequences , 1989, Comput. Appl. Biosci..

[75]  Ka Yee Yeung,et al.  Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset , 2006, Bioinform..

[76]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[77]  Edward R. Dougherty,et al.  Inferring gene regulatory networks from time series data using the minimum description length principle , 2006, Bioinform..

[78]  Roger E Bumgarner,et al.  From co-expression to co-regulation: how many microarray experiments do we need? , 2004, Genome Biology.

[79]  Michael A. Savageau,et al.  Design principles for elementary gene circuits: Elements, methods, and examples. , 2001, Chaos.

[80]  D. Goodlett,et al.  Proteomics without polyacrylamide: qualitative and quantitative uses of tandem mass spectrometry in proteome analysis , 2002, Functional & Integrative Genomics.

[81]  Eric H Davidson,et al.  The Transcriptome of the Sea Urchin Embryo , 2006, Science.

[82]  Hulin Wu,et al.  Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System , 2006, Biometrics.

[83]  Charles DeLisi,et al.  Predictome: a database of putative functional links between proteins , 2002, Nucleic Acids Res..

[84]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[85]  S. Cawley,et al.  Unbiased Mapping of Transcription Factor Binding Sites along Human Chromosomes 21 and 22 Points to Widespread Regulation of Noncoding RNAs , 2004, Cell.

[86]  Giacomo Finocchiaro,et al.  Myc-binding-site recognition in the human genome is determined by chromatin context , 2006, Nature Cell Biology.

[87]  L. Hood,et al.  Systems approaches applied to the study of Saccharomyces cerevisiae and Halobacterium sp. , 2003, Cold Spring Harbor symposia on quantitative biology.

[88]  Michael A. Savageau,et al.  Optimal design of feedback control by inhibition , 1975, Journal of Molecular Evolution.

[89]  Sydney Brenner,et al.  Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. , 2002, Briefings in functional genomics & proteomics.

[90]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[91]  Pedro Mendes,et al.  Artificial gene networks for objective comparison of analysis algorithms , 2003, ECCB.

[92]  Jean-Philippe Vert,et al.  Extracting active pathways from gene expression data , 2003, ECCB.

[93]  David Landsman,et al.  Alignments anchored on genomic landmarks can aid in the identification of regulatory elements , 2005, ISMB.

[94]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[95]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[96]  Sun-Chong Wang,et al.  Reconstructing Genetic Networks from Time Ordered Gene Expression Data Using Bayesian Method with Global Search Algorithm , 2004, J. Bioinform. Comput. Biol..

[97]  Zoubin Ghahramani,et al.  A Bayesian approach to reconstructing genetic regulatory networks with hidden factors , 2005, Bioinform..

[98]  H. McAdams,et al.  Global analysis of the genetic network controlling a bacterial cell cycle. , 2000, Science.

[99]  David J. Reiss,et al.  Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks , 2006, BMC Bioinformatics.

[100]  H. Westerhoff,et al.  How do enzyme activities control metabolite concentrations? An additional theorem in the theory of metabolic control. , 1984, European journal of biochemistry.

[101]  V. Thorsson,et al.  Reverse Engineering Galactose Regulation in Yeast through Model Selection , 2005, Statistical applications in genetics and molecular biology.

[102]  Riccardo Bellazzi,et al.  Random Walk Models for Bayesian Clustering of Gene Expression Profiles , 2005, Applied bioinformatics.

[103]  Darren J. Wilkinson,et al.  Bayesian Sequential Inference for Stochastic Kinetic Biochemical Network Models , 2006, J. Comput. Biol..

[104]  Alberto de la Fuente,et al.  Discovery of meaningful associations in genomic data using partial correlation coefficients , 2004, Bioinform..

[105]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[106]  Kannan Tharakaraman,et al.  Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements , 2006, BMC Bioinformatics.

[107]  D. Landsman,et al.  Statistical analysis of over-represented words in human promoter sequences. , 2004, Nucleic acids research.

[108]  Peter D. Karp,et al.  EcoCyc: a comprehensive database resource for Escherichia coli , 2004, Nucleic Acids Res..

[109]  Carole A. Goble,et al.  Investigating Semantic Similarity Measures Across the Gene Ontology: The Relationship Between Sequence and Annotation , 2003, Bioinform..

[110]  Roded Sharan,et al.  Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Nir Friedman,et al.  Inferring subnetworks from perturbed expression profiles , 2001, ISMB.

[112]  Min Zou,et al.  A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data , 2005, Bioinform..