Rare-Earth nanoparticles with enhanced upconversion emission and suppressed rare-Earth-ion leakage.

Upconversion emissions from rare-earth nanoparticles have attracted much interest as potential biolabels, for which small particle size and high emission intensity are both desired. Herein we report a facile way to achieve NaYF(4):Yb,Er@CaF(2) nanoparticles (NPs) with a small size (10-13 nm) and highly enhanced (ca. 300 times) upconversion emission compared with the pristine NPs. The CaF(2) shell protects the rare-earth ions from leaking, when the nanoparticles are exposed to buffer solution, and ensures biological safety for the potential bioprobe applications. With the upconversion emission from NaYF(4):Yb,Er@CaF(2) NPs, HeLa cells were imaged with low background interference.

[1]  Chun-Hua Yan,et al.  Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. , 2011, Biomaterials.

[2]  Horst Weller,et al.  High resolution photoemission study of CdSe and CdSe/ZnS core-shell nanocrystals , 2003 .

[3]  C. S. Lim,et al.  Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping , 2010, Nature.

[4]  T. Möller,et al.  Green-emitting CePO4:Tb/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. , 2003, Angewandte Chemie.

[5]  Xiaogang Liu,et al.  Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. , 2009, Chemical Society reviews.

[6]  Ya-Wen Zhang,et al.  Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals , 2007 .

[7]  Z. Chai,et al.  Distribution of ytterbium-169 in rat brain after intravenous injection. , 2005, Toxicology letters.

[8]  Wei Feng,et al.  Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. , 2011, Journal of the American Chemical Society.

[9]  Yadong Li,et al.  Upconversion luminescence of monodisperse CaF2:Yb(3+)/Er(3+) nanocrystals. , 2009, Journal of the American Chemical Society.

[10]  Kai Yang,et al.  Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. , 2011, Angewandte Chemie.

[11]  Yadong Li,et al.  Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals , 2007 .

[12]  Helmut Schäfer,et al.  Nanopartikel für die Aufwärtskonversion , 2011 .

[13]  Geoffrey A Ozin,et al.  Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. , 2011, Nano letters.

[14]  Thomas Möller,et al.  Mit einer Quantenausbeute von 70 % grün lumineszierende CePO4:Tb‐Nanopartikel mit einer Schale aus LaPO4 , 2003 .

[15]  F. Huang,et al.  Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. , 2010, Journal of the American Chemical Society.

[16]  M. Haase,et al.  Synthesis of Hexagonal Yb3+,Er3+‐Doped NaYF4 Nanocrystals at Low Temperature , 2009 .

[17]  Xiaogang Liu,et al.  Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. , 2008, Journal of the American Chemical Society.

[18]  Fuyou Li,et al.  Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. , 2008, Journal of the American Chemical Society.

[19]  Ya-Wen Zhang,et al.  High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. , 2006, Journal of the American Chemical Society.

[20]  Marco Pedroni,et al.  NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. , 2011, ACS nano.

[21]  D. Broome,et al.  Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. , 2008, European journal of radiology.

[22]  Tero Soukka,et al.  Fluorescence-quenching-based enzyme-activity assay by using photon upconversion. , 2008, Angewandte Chemie.

[23]  Chun-Hua Yan,et al.  Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystals via a direct assembly method. , 2009, Chemical communications.

[24]  Guanying Chen,et al.  Ultrasmall monodisperse NaYF(4):Yb(3+)/Tm(3+) nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. , 2010, ACS nano.

[25]  Tim Liedl,et al.  Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. , 2005, Nano letters.

[26]  Yu Huang,et al.  Plasmonic modulation of the upconversion fluorescence in NaYF4 :Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. , 2010, Angewandte Chemie.

[27]  T. Grobner Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? , 2006, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[28]  Oliver Benson,et al.  Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. , 2010, Nano letters.

[29]  M. Haase,et al.  Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide‐Doped NaYF4 Nanocrystals , 2004 .

[30]  Jun Chen,et al.  Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly , 2010, Proceedings of the National Academy of Sciences.

[31]  C. O'connor,et al.  A Facile Synthesis and Photoluminescent Properties of Redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (Core/Shell) Nanoparticles , 2006 .

[32]  Z. Chai,et al.  Neurotoxicological consequence of long-term exposure to lanthanum. , 2006, Toxicology letters.

[33]  T. Nann,et al.  Single Quantum Dots in Silica Spheres by Microemulsion Synthesis , 2005 .

[34]  W. Saltzman,et al.  Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[35]  Helmut Schäfer,et al.  Synthesis and Optical Properties of KYF4/Yb, Er Nanocrystals, and their Surface Modification with Undoped KYF4 , 2008 .

[36]  Fan Zhang,et al.  Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. , 2007, Angewandte Chemie.

[37]  Chunhua Yan,et al.  Fabrication and characterization of rare-earth-doped nanostructures on surfaces. , 2011, ACS nano.

[38]  Sudhir V. Shah,et al.  Metal deposition in calcific uremic arteriolopathy. , 2009, Journal of the American Academy of Dermatology.

[39]  Chao Wang,et al.  Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. , 2011, Angewandte Chemie.

[40]  F. V. van Veggel,et al.  Hard proof of the NaYF(4)/NaGdF(4) nanocrystal core/shell structure. , 2009, Journal of the American Chemical Society.

[41]  F. V. Veggel,et al.  Analysis of the Shell Thickness Distribution on NaYF4/NaGdF4 Core/Shell Nanocrystals by EELS and EDS , 2011 .

[42]  Christopher G. Morgan,et al.  The Active‐Core/Active‐Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide‐Doped Nanoparticles , 2009 .