Multi-Stimuli-Responsive Charge-Transfer Hydrogel for Room-Temperature Organic Ferroelectric Thin-Film Devices.

The possibility of designing programmable thin-film supramolecular structures with spontaneous polarization widens the utility of facile supramolecular chemistry. Although a range of low molecular mass molecular single crystals has been shown to exhibit ferroelectric polarization, demonstration of stimuli-responsive, thin-film, solution-processable supramolecular ferroelectric materials is rare. We introduce aromatic π-electron donor-acceptor molecular systems responsive to multiple stimuli that undergo supramolecular chiral mixed-stack charge-transfer (CT) coassembly through the tweezer-inclusion-sandwich process supported by hydrogen-bonding interactions. The structural synergy originating from hydrogen-bonding and chiral CT interactions resulted in the development of spontaneous unidirectional macroscopic polarization in the crystalline nanofibrous hydrogel network, under ambient conditions. Moreover, the tunability of these interactions with optical, mechanical, thermal, and electrical stimuli allowed the design of multistate thin-film memory devices. Our design strategy of the supramolecular motif is expected to help the development of new molecular engineering strategies for designing potentially useful smart multicomponent organic electronics.

[1]  Y. Tokura,et al.  Quantum ferroelectricity in charge-transfer complex crystals , 2015, Nature Communications.

[2]  T. Govindaraju,et al.  Crystallographic insight-guided nanoarchitectonics and conductivity modulation of an n-type organic semiconductor through peptide conjugation. , 2015, Chemical communications.

[3]  Xi Zhang,et al.  A supramolecular strategy for tuning the energy level of naphthalenediimide: Promoted formation of radical anions with extraordinary stability† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc00862j Click here for additional data file. , 2015, Chemical science.

[4]  J. F. Stoddart,et al.  Lock-arm supramolecular ordering: a molecular construction set for cocrystallizing organic charge transfer complexes. , 2014, Journal of the American Chemical Society.

[5]  Sharvan Kumar,et al.  Extraordinary stability of naphthalenediimide radical ion and its ultra-electron-deficient precursor: strategic role of the phosphonium group. , 2014, Journal of the American Chemical Society.

[6]  Satyaprasad P. Senanayak,et al.  Strategies for Fast‐Switching in All‐Polymer Field Effect Transistors , 2014 .

[7]  T. Govindaraju,et al.  Biomimetic molecular organization of naphthalene diimide in the solid state: tunable (chiro-) optical, viscoelastic and nanoscale properties , 2014 .

[8]  Yanhang Zhang,et al.  Molecular ferroelectrics: where electronics meet biology. , 2013, Physical chemistry chemical physics : PCCP.

[9]  Jiaming Zhuang,et al.  Multi-stimuli responsive macromolecules and their assemblies. , 2013, Chemical Society reviews.

[10]  G. Giovannetti,et al.  Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal , 2013, Science.

[11]  N. Giuseppone,et al.  Advances in Supramolecular Electronics – From Randomly Self‐assembled Nanostructures to Addressable Self‐Organized Interconnects , 2013, Advanced materials.

[12]  Kang L. Wang,et al.  Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes , 2012, Nature.

[13]  T. Govindaraju,et al.  Amino Acid Derivatized Arylenediimides: A Versatile Modular Approach for Functional Molecular Materials , 2012, Advanced materials.

[14]  Y. Tokura,et al.  Electronic ferroelectricity in a molecular crystal with large polarization directing antiparallel to ionic displacement. , 2012, Physical review letters.

[15]  M. Maaloum,et al.  Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects. , 2012, Nature chemistry.

[16]  H. Takezoe,et al.  Ferroelectric Columnar Liquid Crystal Featuring Confined Polar Groups Within Core–Shell Architecture , 2012, Science.

[17]  K. S. Narayan,et al.  Polarization fluctuation dominated electrical transport processes of polymer-based ferroelectric field effect transistors , 2012, 1202.4222.

[18]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[19]  R. Xiong,et al.  Ferroelectric metal-organic frameworks. , 2012, Chemical reviews.

[20]  Marina M. Safont-Sempere,et al.  Self-sorting phenomena in complex supramolecular systems. , 2011, Chemical reviews.

[21]  Leone Spiccia,et al.  High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. , 2011, Nature chemistry.

[22]  S. Saha,et al.  Fluoride ion sensing by an anion-π interaction. , 2010, Journal of the American Chemical Society.

[23]  Howard M Colquhoun,et al.  Sequence-selective assembly of tweezer molecules on linear templates enables frameshift-reading of sequence information , 2010, Nature Chemistry.

[24]  Y. Tokura,et al.  Electric-field control of solitons in a ferroelectric organic charge-transfer salt. , 2010, Physical Review Letters.

[25]  Y. Tokura,et al.  Above-room-temperature ferroelectricity in a single-component molecular crystal. , 2010, Nature.

[26]  S. Teat,et al.  Alternative donor-acceptor stacks from crown ethers and naphthalene diimide derivatives: rapid, selective formation from solution and solid state grinding. , 2009, Journal of the American Chemical Society.

[27]  David K Smith,et al.  High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. , 2008, Angewandte Chemie.

[28]  Y. Tokura,et al.  Hydrogen-bonded donor--acceptor compounds for organic ferroelectric materials. , 2007, Chemical communications.

[29]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[30]  T. G. Drushlyak,et al.  Influence of Chiral Dopant Molecular Structure on Ferroelectric Liquid Crystal Parameters , 2006 .

[31]  Sheshanath V. Bhosale,et al.  Photoproduction of Proton Gradients with π-Stacked Fluorophore Scaffolds in Lipid Bilayers , 2006, Science.

[32]  J. Sutherland,et al.  Ferroelectric liquid crystals induced by dopants with axially chiral 2,2'-spirobiindan-1,1'-dione cores. , 2005, Journal of the American Chemical Society.

[33]  Peiwang Zhu,et al.  Very large electro-optic responses in H-bonded heteroaromatic films grown by physical vapour deposition , 2004, Nature materials.

[34]  S. Ramakrishnan,et al.  Aromatic donor-acceptor charge-transfer and metal-ion-complexation-assisted folding of a synthetic polymer. , 2004, Angewandte Chemie.

[35]  S. Techert,et al.  Laser-Induced Ferroelectric Structural Order in an Organic Charge-Transfer Crystal , 2003, Science.

[36]  R. Lemieux Chirality transfer in ferroelectric liquid crystals. , 2001, Accounts of chemical research.

[37]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[38]  H. Sirringhaus,et al.  Integrated optoelectronic devices based on conjugated polymers , 1998, Science.

[39]  R. Lokey,et al.  Synthetic molecules that fold into a pleated secondary structure in solution , 1995, Nature.

[40]  Okamoto,et al.  Anomalous dielectric response in tetrathiafulvalene-p-chloranil as observed in temperature- and pressure-induced neutral-to-ionic phase transition. , 1991, Physical review. B, Condensed matter.

[41]  J. Lajzerowicz-bonneteau,et al.  New Ferroelastic-Ferroelectric Compound: Tanane , 1973 .

[42]  A. L. Solomon Thiourea, a New Ferroelectric , 1956 .

[43]  Matteo Mauro,et al.  Controlling and imaging biomimetic self-assembly. , 2016, Nature chemistry.

[44]  M. Sallé,et al.  Molecular clips and tweezers hosting neutral guests. , 2011, Chemical Society reviews.