Aiding Interactive Configuration and Planning: A Constraint and Evolutionary Approach

This communication aims to propose a two step interactive aiding system dealing with product configuration and production planning. The first step assists interactively and simultaneously the configuration of a product and the planning of its production process. Then a second step complete the two previous tasks thanks to a constrained multi-criteria optimisation that proposes to the user a set of solutions belonging to a Pareto front minimizing cost and cycle time. The first section of the paper introduces the problem. The second one proposes a solution for the first step relying on constraint filtering for both configuration and planning. The following ones propose an evolutionary optimisation process and first computation results.

[1]  John Duchi,et al.  Temporal Constraint Satisfaction Problems An Evaluation of Search Strategies , 2022 .

[2]  Marc Zolghadri,et al.  Meta-heuristics for System Design Engineering , 2009, Foundations of Computational Intelligence.

[3]  Z. Michalewicz,et al.  Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[4]  Christian Bessiere,et al.  Constraint Propagation , 2006, Handbook of Constraint Programming.

[5]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[6]  Bin Li,et al.  Product configuration optimization using a multiobjective genetic algorithm , 2006 .

[7]  Francesca Rossi,et al.  Constraint satisfaction techniques in planning and scheduling , 2010, J. Intell. Manuf..

[8]  R. Kowalczyk,et al.  Constraint consistent genetic algorithms , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[9]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[10]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[11]  Sancho Salcedo-Sanz,et al.  A survey of repair methods used as constraint handling techniques in evolutionary algorithms , 2009, Comput. Sci. Rev..

[12]  Reijo Sulonen,et al.  Towards a general ontology of configuration , 1998, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[13]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[14]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[15]  William E. Hart,et al.  A Filter-Based Evolutionary Algorithm for Constrained Optimization , 2004, Evolutionary Computation.

[16]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .