Ultra High Field Magnetic Resonance Imaging: A Historical Perspective

As one recalls the 1970s and some of the first steps in magnetic resonance imaging [1]–[4], it is easy to discern the great strides that have been made in this discipline over the past 30 years [5]–[7]. Early coarse and grainy results [4] have given way to exquisite anatomical and functional images [5]–[7]. The availability of MRI is now synonymous with quality of medical care, even within the rural hospital setting, and the 1.5 Tesla scanner has become a workhorse of the modern radiological exam. With the exception of CT, and this primarily in the abdomen, no other radiological modality can compete with MRI, not only in terms of the breadth of exams currently possible, but also in the future promise of the technique. Indeed, it seems that every year new clinical applications join the arsenal of MRI exams. Soon, it is anticipated that MRI will be able to fully scan the entire body [8] in great detail, including the most difficult thoracic [9]–[17] and abdominal locations [18]–[22]. Technical advancements forged and tested in the research laboratories of the world [23]–[40] continue to add to the versatility and power of MRI scanners. Nonetheless, what is perhaps most fascinating relative to the evolution of MRI is the seemingly untapped potential that remains. The spawning of new techniques may well open up tremendous venues for MRI in the coming decades. Thus, the clinical horizon is imperceptible. One is left only with the realization that future progress may well surpass all contributions to date.

[1]  C. Schwarzbauer,et al.  MDEFT imaging of the human brain at 8 T , 1999, Magnetic Resonance Materials in Physics, Biology and Medicine.

[2]  J Hennig,et al.  RARE imaging: A fast imaging method for clinical MR , 1986, Magnetic resonance in medicine.

[3]  H. Swartz,et al.  In vivo EPR: when, how and why? , 2004, NMR in biomedicine.

[4]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[5]  R. Goebel,et al.  7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images , 2001, Magnetic resonance in medicine.

[6]  P. Robinson,et al.  Bile duct strictures after hepatobiliary surgery: assessment with MR cholangiography. , 2004, Radiology.

[7]  Peter G. Morris,et al.  Nmr Imaging in Biomedicine , 1982 .

[8]  T. Ibrahim,et al.  Dielectric resonances and B(1) field inhomogeneity in UHFMRI: computational analysis and experimental findings. , 2001, Magnetic resonance imaging.

[9]  H. Wen,et al.  The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. , 1997, Journal of magnetic resonance.

[10]  P. Mansfield Multi-planar image formation using NMR spin echoes , 1977 .

[11]  T. Ibrahim,et al.  Analysis of B1 field profiles and SAR values for multi-strut transverse electromagnetic RF coils in high field MRI applications. , 2001, Physics in medicine and biology.

[12]  P. Robitaille,et al.  On RF power and dielectric resonances in UHF MRI , 1999, NMR in biomedicine.

[13]  P A Bottomley,et al.  Power deposition in whole-body NMR imaging. , 1981, Medical physics.

[14]  Paul S. Tofts,et al.  Standing Waves in Uniform Water Phantoms , 1994 .

[15]  T. Ibrahim A numerical analysis of radio-frequency power requirements in magnetic resonance imaging experiment , 2004, IEEE Transactions on Microwave Theory and Techniques.

[16]  M. Planck Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .

[17]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[18]  P. Robitaille On the validity of Kirchhoff's law of thermal emission , 2003 .

[19]  René M. Botnar,et al.  Correction for heart rate variability improves coronary magnetic resonance angiography , 2005, Journal of magnetic resonance imaging : JMRI.

[20]  K. Uğurbil,et al.  Subchronic In Vivo Effects of a High Static Magnetic Field (9.4 T) in Rats , 2000, Journal of magnetic resonance imaging : JMRI.

[21]  R. Kuzniecky,et al.  Relative utility of 1H spectroscopic imaging and hippocampal volumetry in the lateralization of mesial temporal lobe epilepsy , 1998, Neurology.

[22]  J. Lewin Interventional MR imaging: concepts, systems, and applications in neuroradiology. , 1999, AJNR. American journal of neuroradiology.

[23]  Trevor Douglas,et al.  MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain , 2003, Magnetic resonance in medicine.

[24]  D. Twieg,et al.  Is the intracellular pH different from normal in the epileptic focus of patients with temporal lobe epilepsy? , 1996, Neurology.

[25]  J. Schenck Safety of Strong, Static Magnetic Fields , 2000, Journal of magnetic resonance imaging : JMRI.

[26]  Michael Bock,et al.  Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. , 2004, Radiology.

[27]  K. Uğurbil,et al.  Transmit and receive transmission line arrays for 7 Tesla parallel imaging , 2005, Magnetic resonance in medicine.

[28]  Alastair J. Martin,et al.  Whole‐heart steady‐state free precession coronary artery magnetic resonance angiography , 2003, Magnetic resonance in medicine.

[29]  D. Salat,et al.  Detection of entorhinal layer II using Tesla magnetic resonance imaging , 2005 .

[30]  Ferenc A Jolesz,et al.  Future perspectives for intraoperative MRI. , 2005, Neurosurgery clinics of North America.

[31]  R. Gillies,et al.  In vivo molecular imaging , 2002, Journal of cellular biochemistry. Supplement.

[32]  P. Röschmann,et al.  Spectroscopy and imaging with a 4 tesla whole‐body mr system , 1988, NMR in biomedicine.

[33]  P. Robitaille,et al.  Macroscopic susceptibility in ultra high field MRI. , 1999, Journal of computer assisted tomography.

[34]  Harvey R Herschman,et al.  Molecular Imaging: Looking at Problems, Seeing Solutions , 2003, Science.

[35]  M. McDougall,et al.  64‐channel array coil for single echo acquisition magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[36]  Jullie W Pan,et al.  High frequency coils for clinical nuclear magnetic resonance imaging and spectroscopy , 1993 .

[37]  A. Kangarlu,et al.  Macroscopic susceptibility in ultra high field MRI. II: acquisition of spin echo images from the human head. , 1999, Journal of computer assisted tomography.

[38]  Petra Schmalbrock,et al.  Visualization of microvascularity in glioblastoma multiforme with 8-T high-spatial-resolution MR imaging. , 2002, AJNR. American journal of neuroradiology.

[39]  A. Kangarlu,et al.  High Resolution MRI of the Brainstem at 8 T , 2001, Journal of computer assisted tomography.

[40]  René M. Botnar,et al.  Coronary magnetic resonance angiography for the detection of coronary stenoses. , 2001, The New England journal of medicine.

[41]  Wei Li,et al.  First‐pass contrast‐enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)‐based blood pool agent , 2005, Journal of magnetic resonance imaging : JMRI.

[42]  R. Ladebeck,et al.  In vivo magnetic resonance imaging and spectroscopy of humans with a 4 t whole‐body magnet , 1990, NMR in biomedicine.

[43]  C N Chen,et al.  The field dependence of NMR imaging. II. Arguments concerning an optimal field strength , 1986, Magnetic resonance in medicine.

[44]  L. Wald,et al.  Eight‐channel phased array coil and detunable TEM volume coil for 7 T brain imaging , 2005, Magnetic resonance in medicine.

[45]  F. Shellock,et al.  MR procedures: biologic effects, safety, and patient care. , 2004, Radiology.

[46]  Pierre-Marie Robitaille,et al.  Biological effects and health implications in magnetic resonance imaging , 2000 .

[47]  Andrew E Arai,et al.  Determining canine myocardial area at risk with manganese-enhanced MR imaging. , 2005, Radiology.

[48]  Denis Le Bihan,et al.  Looking into the functional architecture of the brain with diffusion MRI , 2003, Nature Reviews Neuroscience.

[49]  A. Shmuel,et al.  Sustained Negative BOLD, Blood Flow and Oxygen Consumption Response and Its Coupling to the Positive Response in the Human Brain , 2002, Neuron.

[50]  R. Goebel,et al.  Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex , 2003, Neuron.

[51]  Anna Moore,et al.  In vivo magnetic resonance imaging of transgene expression , 2000, Nature Medicine.

[52]  A. Kangarlu,et al.  Randomized comparison of cognitive function in humans at 0 and 8 Tesla , 2003, Journal of magnetic resonance imaging : JMRI.

[53]  J T Vaughan,et al.  Evaluation of 31P metabolite differences in human cerebral gray and white matter , 1998, Magnetic resonance in medicine.

[54]  P. Mansfield,et al.  Medical imaging by NMR. , 1977, The British journal of radiology.

[55]  T. Ibrahim,et al.  Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator. , 2001, Magnetic resonance imaging.

[56]  N. Rofsky,et al.  MR imaging of the stomach: potential use for mangafodipir trisodium--a study in swine. , 2004, Radiology.

[57]  R. Günther,et al.  Spin-labeling coronary MR angiography with steady-state free precession and radial k-space sampling: initial results in healthy volunteers. , 2005, Radiology.

[58]  P. Lauterbur,et al.  Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance , 1973, Nature.

[59]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[60]  Grace Hu,et al.  Molecular MR imaging of melanoma angiogenesis with ανβ3‐targeted paramagnetic nanoparticles , 2005, Magnetic resonance in medicine.

[61]  A. Kangarlu,et al.  Human magnetic resonance imaging at 8 T , 1998, NMR in biomedicine.

[62]  K. Uğurbil,et al.  Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. , 1998, Journal of magnetic resonance.

[63]  Jullie W Pan,et al.  Quantitative spectroscopic imaging of the human brain , 1998, Magnetic resonance in medicine.

[64]  J Vetter,et al.  Whole-body MR imaging and spectroscopy with a 4-T system. , 1988, Radiology.

[65]  Geert Rikken,et al.  Cellular disorders induced by high magnetic fields , 2005, Journal of magnetic resonance imaging : JMRI.

[66]  Essa Yacoub,et al.  Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans , 2005, NeuroImage.

[67]  Jullie W Pan,et al.  Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation , 1996, Magnetic resonance in medicine.

[68]  A. Kangarlu,et al.  High resolution MRI of the deep gray nuclei at 8 Tesla. , 1999, Journal of computer assisted tomography.

[69]  Stephen Chan,et al.  The clinical relevance and scientific potential of ultra high-field-strength MR imaging. , 2002, AJNR. American journal of neuroradiology.

[70]  R. Buxton Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques , 2002 .

[71]  P. Novak,et al.  High-resolution ultrahigh-field MRI of stroke. , 2005, Magnetic resonance imaging.

[72]  K Uğurbil,et al.  31P NMR spectroscopy of the human heart at 4 T: Detection of substantially uncontaminated cardiac spectra and differentiation of subepicardium and subendocardium , 1992, Magnetic resonance in medicine.

[73]  J. Schenck,et al.  An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T , 1985 .

[74]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[75]  R. Turner,et al.  Echo-planar imaging: magnetic resonance imaging in a fraction of a second. , 1991, Science.

[76]  M. Van Cauteren,et al.  Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. , 2005, Radiology.

[77]  P. Röschmann,et al.  Sensitivity enhancement in whole‐body natural abundance 13C spectroscopy using 13C/1H double‐resonance techniques at 4 tesla , 1991, Magnetic resonance in medicine.

[78]  Jullie W Pan,et al.  Proton spectroscopic imaging at 4.1 tesla in patients with malformations of cortical development and epilepsy , 1997, Neurology.

[79]  R. Kuzniecky,et al.  Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1H magnetic resonance spectroscopic imaging , 1996, Annals of neurology.

[80]  R. Kuzniecky,et al.  Statistically driven identification of focal metabolic abnormalities in temporal lobe epilepsy with corrections for tissue heterogeneity using 1H spectroscopic imaging , 2000, Magnetic resonance in medicine.

[81]  R. Kuzniecky,et al.  Application of high field spectroscopic imaging in the evaluation of temporal lobe epilepsy. , 1995, Magnetic resonance imaging.

[82]  Scott E. Fraser,et al.  In vivo visualization of gene expression using magnetic resonance imaging , 2000, Nature Biotechnology.

[83]  Konstantin Nikolaou,et al.  Fast oxygen‐enhanced multislice imaging of the lung using parallel acquisition techniques , 2005, Magnetic resonance in medicine.

[84]  K. Uğurbil,et al.  High‐resolution, spin‐echo BOLD, and CBF fMRI at 4 and 7 T , 2002, Magnetic resonance in medicine.

[85]  C. Schwarzbauer,et al.  Human rapid acquisition with relaxation enhancement imaging at 8 T without specific absorption rate violation , 1999, Magnetic Resonance Materials in Physics, Biology and Medicine.

[86]  Jullie W Pan,et al.  Spectroscopic imaging of human brain glutamate by water‐suppressed J‐refocused coherence transfer at 4.1 T , 1996, Magnetic resonance in medicine.

[87]  M. Paley,et al.  3D volume‐localized pO2 measurement in the human lung with 3He MRI , 2005, Magnetic resonance in medicine.

[88]  Dae-Shik Kim,et al.  Localized cerebral blood flow response at submillimeter columnar resolution , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Michael B. Smith,et al.  Central brightening due to constructive interference with, without, and despite dielectric resonance , 2005, Journal of magnetic resonance imaging : JMRI.

[90]  P. Roschmann Comments on 'Human magnetic resonance imaging at 8 T '. , 1999 .

[91]  B. Choe,et al.  Biliary atresia: feasibility of mangafodipir trisodium-enhanced MR cholangiography for evaluation. , 2005, Radiology.

[92]  J B Ra,et al.  Fast imaging using subencoding data sets from multiple detectors , 1993, Magnetic resonance in medicine.

[93]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[94]  William G Bradley,et al.  Achieving gross total resection of brain tumors: intraoperative MR imaging can make a big difference. , 2002, AJNR. American journal of neuroradiology.

[95]  P. Robitaille Black body and transverse electromagnetic resonators operating at 340 MHz: volume RF coils for ultra high field MRI. , 1999, Journal of computer assisted tomography.

[96]  J W Carlson,et al.  Imaging time reduction through multiple receiver coil data acquisition and image reconstruction , 1993, Magnetic resonance in medicine.

[97]  D. Hoult,et al.  The field dependence of NMR imaging. I. Laboratory assessment of signal‐to‐noise ratio and power deposition , 1986, Magnetic resonance in medicine.

[98]  K. Uğurbil,et al.  Efficient high‐frequency body coil for high‐field MRI , 2004, Magnetic resonance in medicine.

[99]  A. Kangarlu,et al.  Human leptomeningeal and cortical vascular anatomy of the cerebral cortex at 8 Tesla. , 1999, Journal of computer assisted tomography.

[100]  Val M. Runge,et al.  The Physics of Clinical MR Taught Through Images , 2007, American Journal of Neuroradiology.

[101]  A. Kangarlu,et al.  Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. , 1999, Magnetic resonance imaging.

[102]  K Uğurbil,et al.  Observation of resolved glucose signals in 1H NMR spectra of the human brain at 4 Tesla , 1996, Magnetic resonance in medicine.

[103]  Jullie W Pan,et al.  High frequency volume coils for clinical NMR imaging and spectroscopy , 1994, Magnetic resonance in medicine.

[104]  H P Hetherington,et al.  Spatial resolution in 31P metabolite imaging of the human brain at 4.1 T. , 1994, Journal of magnetic resonance. Series B.

[105]  Eduard E de Lange,et al.  MRI of the lungs using hyperpolarized noble gases , 2002, Magnetic resonance in medicine.

[106]  D G Cory,et al.  Low-field MRI of laser polarized noble gas. , 1998, Physical review letters.

[107]  Jullie W Pan,et al.  2D 1H spectroscopic imaging of the human brain at 4.1 T , 1994, Magnetic resonance in medicine.

[108]  A. Shmuel,et al.  Perfusion‐based high‐resolution functional imaging in the human brain at 7 Tesla , 2002, Magnetic resonance in medicine.

[109]  Christopher Nimsky,et al.  Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. , 2004, Radiology.

[110]  J. Denegre,et al.  Cleavage planes in frog eggs are altered by strong magnetic fields. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[111]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[112]  T. Ibrahim,et al.  Dielectric resonance phenomena in ultra high field MRI. , 1999, Journal of computer assisted tomography.

[113]  Jullie W Pan,et al.  13C editing of glutamate in human brain using J‐refocused coherence transfer spectroscopy at 4.1 T , 1997, Magnetic resonance in medicine.

[114]  R E Bailey,et al.  Design and assembly of an 8 tesla whole-body MR scanner. , 1999, Journal of computer assisted tomography.

[115]  A. Haase,et al.  Rapid NMR Imaging Using Low Flip-Angle Pulses , 2004 .

[116]  A. Kangarlu,et al.  RF penetration in ultra high field MRI: challenges in visualizing details within the center of the human brain. , 1999, Journal of computer assisted tomography.

[117]  K. Uğurbil,et al.  Noninvasive measurements of transmural myocardial metabolites using 3-D (31)P NMR spectroscopy. , 2001, American journal of physiology. Heart and circulatory physiology.

[118]  P. Robitaille Response to ‘Does RF brain heating decrease at 8 T’ , 1999, NMR in biomedicine.

[119]  Jullie W Pan,et al.  Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T , 1995, Annals of neurology.

[120]  J. Debatin,et al.  Whole-body MR imaging: evaluation of patients for metastases. , 2004, Radiology.

[121]  R S Balaban,et al.  The design and test of a new volume coil for high field imaging , 1994, Magnetic resonance in medicine.

[122]  Jullie W Pan,et al.  Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1T , 1994, Magnetic resonance in medicine.

[123]  A. Kangarlu,et al.  T1- and T2-weighted imaging at 8 Tesla. , 1999, Journal of computer assisted tomography.

[124]  R. Kuzniecky,et al.  Lateralization of human temporal lobe epilepsy by 31P NMR spectroscopic imaging at 4.1 T , 1998, Neurology.

[125]  P van Gelderen,et al.  Water diffusion and acute stroke , 1994, Magnetic resonance in medicine.

[126]  Lawrence L. Wald,et al.  Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters , 2005, NeuroImage.

[127]  Essa Yacoub,et al.  Zoomed Functional Imaging in the Human Brain at 7 Tesla with Simultaneous High Spatial and High Temporal Resolution , 2002, NeuroImage.

[128]  P. Röschmann Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging. , 1987, Medical physics.

[129]  A. Kangarlu,et al.  High signal-to-noise FLASH imaging at 8 Tesla. , 1999, Magnetic resonance imaging.

[130]  J. Debatin,et al.  Dark lumen magnetic resonance colonography: comparison with conventional colonoscopy for the detection of colorectal pathology , 2003, Gut.

[131]  Kamil Ugurbil,et al.  Retinotopic mapping in cat visual cortex using high-field functional magnetic resonance imaging , 2003, Journal of Neuroscience Methods.

[132]  G. Marchal,et al.  Clinical validation of high‐resolution fast spin‐echo MR colonography after colon distention with air , 2005, Journal of magnetic resonance imaging : JMRI.

[133]  A. Shmuel,et al.  Investigation of the initial dip in fMRI at 7 Tesla , 2001, NMR in biomedicine.

[134]  A Abduljalil,et al.  Intracranial ossifications and microangiopathy at 8 Tesla MRI. , 2001, Magnetic resonance imaging.

[135]  Valerie A. Norton,et al.  Ultra-fast three dimensional imaging of hyperpolarized 13C in vivo , 2005, Magnetic Resonance Materials in Physics, Biology and Medicine.

[136]  Paul Schrater,et al.  BOLD fMRI and psychophysical measurements of contrast response to broadband images , 2004, Vision Research.

[137]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[138]  Janice Ward,et al.  Liver metastases in candidates for hepatic resection: comparison of helical CT and gadolinium- and SPIO-enhanced MR imaging. , 2005, Radiology.

[139]  A. Kangarlu,et al.  Ultra high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K. , 2000, Journal of computer assisted tomography.

[140]  Jullie W Pan,et al.  Detection of brain glutamate and glutamine in spectroscopic images at 4.1 T , 1994, Magnetic resonance in medicine.

[141]  Ravi S. Menon,et al.  Imaging at high magnetic fields: initial experiences at 4 T. , 1993, Magnetic resonance quarterly.

[142]  P. Mansfield,et al.  Active magnetic screening of coils for static and time-dependent magnetic field generation in NMR imaging , 1986 .

[143]  Petra Schmalbrock,et al.  Susceptibility-based imaging of glioblastoma microvascularity at 8 T: correlation of MR imaging and postmortem pathology. , 2004, AJNR. American journal of neuroradiology.

[144]  A. Kangarlu,et al.  High resolution MRI of the deep brain vascular anatomy at 8 Tesla: susceptibility-based enhancement of the venous structures. , 1999, Journal of computer assisted tomography.

[145]  Lawrence L. Wald,et al.  Design considerations and coil comparisons for 7 T brain imaging , 2005 .

[146]  A Abduljalil,et al.  Ultra High Field MRI at 8 Tesla of Subacute Hemorrhagic Stroke , 2001, Journal of computer assisted tomography.

[147]  P. Lauterbur,et al.  The sensitivity of the zeugmatographic experiment involving human samples , 1979 .