Sensitive Force Measurements With Optically Trapped Micro-Spheres in High Vacuum

This dissertation details our work on optically levitating and cooling microspheres in vacuum for use as force sensors. We have extensively modeled various optical trap configurations to determine stable trap geometries for μm sized spheres in a dual-beam optical trap. Techniques have been developed for overcoming instabilities which occur when pumping trapped micro-spheres from low to high vacuum. We have also improved on methods for depositing micro-spheres in optical traps. We have shown that optically levitated micro-spheres are excellent force sensors. By eliminating the need to tether the spheres to a solid substrate, excellent environmental decoupling is achieved. In this work we present the realization of aN force sensitivity. The intended use for the technology developed is to extend the search for non-Newtonian gravity by several orders of magnitude at the micrometer length scale [1]. This technology is also suitable for investigating the Casimir effect in the unexplored regime where neither the Proximity Force Approximation or the Casimir-Polder limits are valid.

[1]  V. Nesvizhevsky Interaction of neutrons with nanoparticles , 2002 .

[2]  Aharon Kapitulnik,et al.  Improved constraints on non-Newtonian forces at 10 microns , 2008, 0802.2350.

[3]  Steven Chu,et al.  How the Laser Happened: Adventures of a Scientist , 1999 .

[4]  M W Berns,et al.  Parametric study of the forces on microspheres held by optical tweezers. , 1994, Applied optics.

[5]  A. Jordan,et al.  Colloquium : Understanding quantum weak values: Basics and applications , 2013, 1305.7154.

[6]  A. Geraci,et al.  Observation of a classical Cheshire cat in an optical interferometer. , 2014, Optics letters.

[7]  Andrew A. Geraci,et al.  Sensing short range forces with a nanosphere matter-wave interferometer , 2015 .

[8]  D. Roberts,et al.  On the attraction between two perfectly conducting plates , 2011 .

[9]  M. J. Sparnaay Measurements of attractive forces between flat plates , 1958 .

[10]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[11]  J. Price,et al.  Upper limits to submillimetre-range forces from extra space-time dimensions , 2003, Nature.

[12]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[13]  Kyle C. Koppenhoefer,et al.  Mie Scattering of Electromagnetic Waves , 2013 .

[14]  Savas Dimopoulos,et al.  Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity , 1998, hep-ph/9807344.

[15]  Savas Dimopoulos,et al.  The Hierarchy problem and new dimensions at a millimeter , 1998, hep-ph/9803315.

[16]  M. J. Sparnaay Attractive Forces between Flat Plates , 1957, Nature.

[17]  J. Anders,et al.  Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. , 2013, Nature nanotechnology.

[18]  Zhang-qi Yin,et al.  OPTOMECHANICS OF LEVITATED DIELECTRIC PARTICLES , 2013, 1308.4503.

[19]  Stevenson,et al.  The sense in which a "weak measurement" of a spin-(1/2 particle's spin component yields a value 100. , 1989, Physical review. D, Particles and fields.

[20]  Ritchie,et al.  Realization of a measurement of a "weak value" , 1991, Physical review letters.

[21]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[22]  A. Geraci,et al.  Cold atoms as a coolant for levitated optomechanical systems , 2014, 1412.5503.

[23]  F. Nori,et al.  Photon trajectories, anomalous velocities and weak measurements: a classical interpretation , 2013 .

[24]  S. Lamoreaux Demonstration of the Casimir force in the 0.6 to 6 micrometers range , 1996 .

[25]  E. A. Cornell,et al.  Measurement of the Casimir-Polder force through center-of-mass oscillations of a Bose-Einstein condensate , 2005 .

[26]  Norman R. Heckenberg,et al.  Optical tweezers computational toolbox , 2007 .

[27]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[28]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[29]  New experimental constraints on non-Newtonian forces below 100 microm. , 2002, Physical review letters.

[30]  Tongcang Li,et al.  Fundamental Tests of Physics with Optically Trapped Microspheres , 2012 .

[31]  Hans-Jürgen Butt,et al.  Adhesion and Friction Forces between Spherical Micrometer-Sized Particles , 1999 .

[32]  S. Dimopoulos,et al.  Millimetre-Range Forces in Superstring Theories with Weak-Scale Compactification , 1997, hep-ph/9710204.

[33]  C D Hoyle,et al.  Tests of the gravitational inverse-square law below the dark-energy length scale. , 2007, Physical review letters.

[34]  Arthur Ashkin,et al.  Feedback stabilization of optically levitated particles , 1977 .

[35]  D. Kartashov,et al.  Mechanism of small variations in energy of ultracold neutrons interacting with a surface , 2002 .

[36]  Cho,et al.  Measurement of the Casimir-Polder force. , 1993, Physical review letters.

[37]  Leggett Comment on "How the result of a measurement of a component of the spin of a spin-(1/2 particle can turn out to be 100" , 1989, Physical review letters.

[38]  Dan Lee,et al.  Calculation of optical trapping forces on microspheres in the ray optics regime , 2002 .

[39]  U. Mohideen,et al.  Precision Measurement of the Casimir Force from 0.1 to 0.9 μm , 1998, physics/9805038.

[40]  Laurent Pilon,et al.  Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. , 2007, Applied optics.

[41]  Arthur Ashkin,et al.  Optical levitation in high vacuum , 1976 .

[42]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[43]  Giovanni Volpe,et al.  Computational toolbox for optical tweezers in geometrical optics , 2014, 1402.5439.

[44]  A. Geraci,et al.  Detecting high-frequency gravitational waves with optically levitated sensors. , 2012, Physical review letters.

[45]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[46]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[47]  Zhang-qi Yin,et al.  Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling , 2013, 1305.1701.

[48]  G. L. Klimchitskaya,et al.  Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates , 2007 .

[49]  Nan Zhao,et al.  Hybrid opto-mechanical systems with nitrogen-vacancy centers , 2015, 1501.00636.

[50]  S. A. Beresnev,et al.  Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization , 1990, Journal of Fluid Mechanics.

[51]  Arthur Ashkin,et al.  Optical Levitation by Radiation Pressure , 1971 .

[52]  D. E. Changa,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009 .

[53]  A. Geraci,et al.  Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum , 2015, 1503.08799.

[54]  S. Reynaud,et al.  Casimir force between metallic mirrors , 1999, quant-ph/9907105.

[55]  W. H. Walton The Mechanics of Aerosols , 1966 .

[56]  Bo Sun,et al.  Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability. , 2008, Physical review letters.

[57]  M. Masuda,et al.  Limits on nonstandard forces in the submicrometer range. , 2009, Physical review letters.

[58]  S. Lamoreaux,et al.  Observation of the thermal Casimir force , 2010, 1011.5219.

[59]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[60]  E. F. Nichols,et al.  A Preliminary Communication on the Pressure of Heat and Light Radiation , 1901 .

[61]  S. Dimopoulos,et al.  THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS NEW DIMENSIONS AT A MILLIMETER TO A FERMI AND SUPERSTRINGS AT A TeV , 2005 .

[62]  S. Popescu,et al.  Quantum Cheshire Cats , 2012, 1202.0631.

[63]  Florian Blaser,et al.  Cavity cooling of an optically levitated submicron particle , 2013, Proceedings of the National Academy of Sciences.

[64]  E. Florin,et al.  Direct Measurement of the Nonconservative Force Field Generated by Optical Tweezers , 2009 .

[65]  S. Dimopoulos,et al.  Macroscopic forces from supersymmetry , 1996, hep-ph/9602350.

[66]  Michael J Biercuk,et al.  Ultrasensitive detection of force and displacement using trapped ions. , 2010, Nature nanotechnology.

[67]  John Kitching,et al.  Short-range force detection using optically cooled levitated microspheres. , 2010, Physical review letters.

[68]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[69]  A. Matzkin,et al.  Observation of a quantum Cheshire Cat in a matter-wave interferometer experiment , 2013, Nature Communications.