A generalized nonlinear mixed-effects height–diameter model for Norway spruce in mixed-uneven aged stands

[1]  H. Pretzsch,et al.  Oak often needs to be promoted in mixed beech-oak stands - the structural processes behind competition and silvicultural management in mixed stands of European beech and sessile oak , 2020, iForest - Biogeosciences and Forestry.

[2]  L. Mehtätalo,et al.  Mixed-effects generalized height–diameter model for young silver birch stands on post-agricultural lands , 2020 .

[3]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[4]  G. Trincado,et al.  Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey , 2018, Forest Ecology and Management.

[5]  R. Astrup,et al.  Longitudinal height-diameter curves for Norway spruce, Scots pine and silver birch in Norway based on shape constraint additive regression models , 2018, Forest Ecosystems.

[6]  Liyong Fu,et al.  A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China , 2017 .

[7]  K. Antal,et al.  Nonlinear height–diameter models for three woody, understory species in a temperate oak forest in Hungary , 2016 .

[8]  J. Bauhus,et al.  Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany , 2016, Oecologia.

[9]  Lauri Mehtätalo,et al.  Modeling height-diameter curves for prediction , 2015 .

[10]  J. Breidenbach,et al.  Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data , 2015 .

[11]  Piermaria Corona,et al.  European Mixed Forests: definition and research perspectives , 2014 .

[12]  J. Fernández-Martínez,et al.  Tree height prediction approaches for uneven-aged beech forests in northwestern Spain , 2013 .

[13]  J. Corral-Rivas,et al.  Can random components explain differences in the height–diameter relationship in mixed uneven-aged stands? , 2013, Annals of Forest Science.

[14]  A. Zingg,et al.  Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient , 2010, Annals of Forest Science.

[15]  D. Wiens,et al.  Assessing the impacts of species composition, top height and density on individual tree height prediction of quaking aspen in boreal mixedwoods , 2009 .

[16]  Isabel Cañellas,et al.  A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.) , 2008 .

[17]  Hailemariam Temesgen,et al.  Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests , 2008 .

[18]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[19]  Mahadev Sharma,et al.  Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach , 2007 .

[20]  H. Burkhart,et al.  Regional mixed-effects height–diameter models for loblolly pine (Pinus taeda L.) plantations , 2007, European Journal of Forest Research.

[21]  Klaus von Gadow,et al.  A generalized height–diameter model including random components for radiata pine plantations in northwestern Spain , 2006 .

[22]  Dietrich Stoyan,et al.  Edge-correction needs in estimating indices of spatial forest structure , 2006 .

[23]  Arne Pommerening,et al.  Evaluating structural indices by reversing forest structural analysis , 2006 .

[24]  Douglas J. Stevenson,et al.  A Random-Parameter Height-Dbh Model for Cherrybark Oak , 2005 .

[25]  H. Temesgen,et al.  Generalized height–diameter models—an application for major tree species in complex stands of interior British Columbia , 2004, European Journal of Forest Research.

[26]  M. Tomé,et al.  Height–diameter equation for first rotation eucalypt plantations in Portugal , 2002 .

[27]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[28]  S. Huang,et al.  Development of ecoregion-based height–diameter models for white spruce in boreal forests , 2000 .

[29]  R. L. Bailey,et al.  Height-diameter models for tropical forests on Hainan Island in southern China , 1998 .

[30]  P. Radtke,et al.  A comparison of methods for edge-bias compensation , 1998 .

[31]  J. Lappi,et al.  A Longitudinal Analysis of Height/Diameter Curves , 1997, Forest Science.

[32]  L. Zhang,et al.  Height-diameter equations for ten tree species in the inland Northwest , 1996 .

[33]  Boris Zeide,et al.  Analysis of Growth Equations , 1993 .

[34]  Douglas P. Wiens,et al.  Comparison of nonlinear height–diameter functions for major Alberta tree species , 1992 .

[35]  J. Lappi Calibration of Height and Volume Equations with Random Parameters , 1991, Forest Science.

[36]  D. G. Watts,et al.  Relative Curvature Measures of Nonlinearity , 1980 .

[37]  A. Ek,et al.  Plot Edge Bias in Forest Stand Growth Simulation Models , 1974 .

[38]  D. M. Allen Mean Square Error of Prediction as a Criterion for Selecting Variables , 1971 .

[39]  R. Curtis Height-Diameter and Height-Diameter-Age Equations For Second-Growth Douglas-Fir , 1967 .

[40]  E. C. Pielou The Use of Point-to-Plant Distances in the Study of the Pattern of Plant Populations , 1959 .

[41]  F. J. Richards A Flexible Growth Function for Empirical Use , 1959 .

[42]  L. Bertalanffy Quantitative Laws in Metabolism and Growth , 1957 .

[43]  P. J. Clark,et al.  Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations , 1954 .

[44]  H. Arthur Meyer,et al.  Structure, Growth, and Drain in Balanced Uneven-Aged Forests , 1952 .

[45]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[46]  H. Pretzsch Forest Dynamics, Growth, and Yield , 2010 .

[47]  B. C. Florin,et al.  Structural research in the natural beech forest, situated at the eastern limit (Humosu Old Growth Beech Forest, Iashook˜i county, Romania). , 2010 .

[48]  Lauri Mehtätalo,et al.  A longitudinal height-diameter model for Norway spruce in Finland , 2004 .

[49]  Rafael Calama,et al.  Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain , 2004 .

[50]  Arne Pommerening,et al.  Approaches to quantifying forest structures , 2002 .

[51]  B. Parresol,et al.  Remarks on Height-Diameter Modeling , 2001 .

[52]  J. Shaw Application of stand density index to irregularly structured stands. , 2000 .

[53]  D. Hann,et al.  Height-diameter equations for seventeen tree species in southwest Oregon , 1987 .

[54]  E. H. Simpson Measurement of Diversity , 1949, Nature.

[55]  H. A. Meyer A mathematical expression for height curves. , 1940 .