Cellular automata models of kinetically and thermodynamically controlled reactions

Cellular automata simulations of the competition between kinetically controlled and thermodynamically controlled products of a reaction are described. The simulations are based on a stochastic first-order cellular automata model described previously (20) and dem- onstrate an alternative to the traditional approach to such problems that relies on solution of a set of coupled differential rate equations. Unlike the traditional approach, the cellular automata models are applicable to finite numbers of elements and yield statistical information on the fluctuations to be expected in such finite cases. The usual deterministic solutions appear as limiting cases involving either very large numbers of reacting ingredients or a large number of trials for smaller sets of ingredients. 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 529- 534, 2000

[1]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[2]  George H. Weiss,et al.  Stochastic Processes in Chemical Physics: The Master Equation , 1977 .

[3]  K. Shuler,et al.  Stochastic processes in chemical physics , 1969 .

[4]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[5]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[6]  John D. Roberts,et al.  Basic principles of organic chemistry , 1965 .

[7]  Farrington Daniels,et al.  Physical Chemistry, 2nd Ed. , 1961 .

[8]  H. Engel,et al.  Chemical Waves and Patterns , 1996 .

[9]  King-Chuen Lin Understanding Product Optimization: Kinetic versus Thermodynamic Control. , 1988 .

[10]  S. Meldal,et al.  Specifying Ada tasking using patterns of behavior , 1988, [1988] Proceedings of the Twenty-First Annual Hawaii International Conference on System Sciences. Volume II: Software track.

[11]  Lemont B. Kier,et al.  Simulation of First-Order Chemical Kinetics Using Cellular Automata , 1997, J. Chem. Inf. Comput. Sci..

[12]  Richard A. Keller,et al.  Single-Molecule Detection in Liquids by Laser-Induced Fluorescence , 1996 .

[13]  Arthur W. Burks,et al.  Essays on cellular automata , 1970 .

[14]  J. Peeters,et al.  Stochastic simulation of chemically activated unimolecular reactions , 1997 .

[15]  J. L. Franklin,et al.  A General Theory of Coupled Sets of First Order Reactions , 1950 .

[16]  M. Muir Physical Chemistry , 1888, Nature.

[17]  X. Xie,et al.  Single-Molecule Spectroscopy and Dynamics at Room Temperature , 1996 .

[18]  L. Kier,et al.  Stochastic Cellular Automata Models of Molecular Excited-State Dynamics , 1998 .

[19]  L. Kier,et al.  AURORA BOREALIS : STOCHASTIC CELLULAR AUTOMATA SIMULATIONS OF THE EXCITED-STATE DYNAMICS OF OXYGEN ATOMS , 1999 .

[20]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[21]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[22]  Anna T. Lawniczak,et al.  Reactive lattice gas automata , 1991 .

[23]  L. J. Schaad The Monte Carlo Integration of Rate Equations , 1963 .

[24]  W. Moerner,et al.  HIGH-RESOLUTION OPTICAL SPECTROSCOPY OF SINGLE MOLECULES IN SOLIDS , 1996 .

[25]  M. E. Brown,et al.  Thermodynamically and kinetically controlled products , 1985 .

[26]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[27]  J. Barker,et al.  Incubation in cyclohexene decomposition at high temperatures , 1990 .