Scalable Gaussian Process for Extreme Classification
暂无分享,去创建一个
Aki Vehtari | Michael Riis Andersen | Akash Kumar Dhaka | Pablo Garcia Moreno | Pablo G. Moreno | Akash Kumar Dhaka | Aki Vehtari | M. R. Andersen
[1] David M. Blei,et al. Augment and Reduce: Stochastic Inference for Large Categorical Distributions , 2018, ICML.
[2] James Hensman,et al. Scalable Variational Gaussian Process Classification , 2014, AISTATS.
[3] Grigorios Tsoumakas,et al. Effective and Efficient Multilabel Classification in Domains with Large Number of Labels , 2008 .
[4] Pradeep Ravikumar,et al. PPDsparse: A Parallel Primal-Dual Sparse Method for Extreme Classification , 2017, KDD.
[5] Prateek Jain,et al. Sparse Local Embeddings for Extreme Multi-label Classification , 2015, NIPS.
[6] Maurizio Filippone,et al. AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models , 2016, UAI.
[7] Mark Girolami,et al. Variational Bayesian Multinomial Probit Regression with Gaussian Process Priors , 2006, Neural Computation.
[8] Garud Iyengar,et al. Unbiased scalable softmax optimization , 2018, ArXiv.
[9] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[10] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[11] Aki Vehtari,et al. Nested expectation propagation for Gaussian process classification , 2013, J. Mach. Learn. Res..
[12] Alan D. Saul. Gaussian process based approaches for survival analysis , 2016 .
[13] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[14] Michalis K. Titsias,et al. One-vs-Each Approximation to Softmax for Scalable Estimation of Probabilities , 2016, NIPS.
[15] Daniel Hernández-Lobato,et al. Robust Multi-Class Gaussian Process Classification , 2011, NIPS.
[16] Daniel Hernández-Lobato,et al. Scalable Multi-Class Gaussian Process Classification using Expectation Propagation , 2017, ICML.
[17] Bernhard Schölkopf,et al. DiSMEC: Distributed Sparse Machines for Extreme Multi-label Classification , 2016, WSDM.