Organization of Visual Areas in Macaque and Human Cerebral Cortex

Introduction. The mammalian visual system contains numerous visual areas that collectively occupy a large fraction of cerebral cortex. For cortical cartographers interested in vision, a fundamental set of objectives is to identify in key species of interest the overall extent of visual cortex, the total number of visual areas, the identities of these areas, and their location in relation to one another and to various gyral and sulcal landmarks. Over the past three decades there has been much progress in this endeavor for a number of primate and non-primate species. However, the task remains far from complete. Numerous qualitatively different partitioning schemes abound, even for the most intensively studied species. Our fragmentary and rapidly evolving understanding is reminiscent of the situation faced by cartographers of the earth's surface many centuries ago, when maps were replete with uncertainties and divergent portrayals of most of the planet's surface.

[1]  D. Pandya,et al.  Posterior parietal projections to the intraparietal sulcus of the rhesus monkey , 2004, Experimental Brain Research.

[2]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  J. Kaas,et al.  Evidence for a Modified V3 with Dorsal and Ventral Halves in Macaque Monkeys , 2002, Neuron.

[4]  Nancy Kanwisher Faculty Opinions recommendation of Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. , 2002 .

[5]  D. V. van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[6]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[7]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[8]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[9]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[10]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[11]  Alex R. Wade,et al.  Visual areas and spatial summation in human visual cortex , 2001, Vision Research.

[12]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.

[13]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[14]  H Burton,et al.  Attending to and Remembering Tactile Stimuli: A Review of Brain Imaging Data and Single-Neuron Responses , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[15]  E. DeYoe,et al.  A comparison of visual and auditory motion processing in human cerebral cortex. , 2000, Cerebral cortex.

[16]  H. Sakata,et al.  Parietal neurons represent surface orientation from the gradient of binocular disparity. , 2000, Journal of neurophysiology.

[17]  C. Galletti,et al.  The cortical visual area V6: brain location and visual topography , 1999, The European journal of neuroscience.

[18]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  N. Logothetis,et al.  Functional imaging of the monkey brain , 1999, Nature Neuroscience.

[20]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[21]  Leslie G. Ungerleider,et al.  The Effect of Face Inversion on Activity in Human Neural Systems for Face and Object Perception , 1999, Neuron.

[22]  Abraham Z. Snyder,et al.  Surface-Based Analyses of the Human Cerebral Cortex , 1999 .

[23]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[24]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[25]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[26]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[27]  HA Drury,et al.  Visualization Software and Atlases for Surface-Based Analyses of Cerebral Cortex , 1998, NeuroImage.

[28]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[29]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[30]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[31]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[33]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[34]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[35]  J. Olavarria,et al.  The global pattern of cytochrome oxidase stripes in visual area V2 of the macaque monkey. , 1997, Cerebral cortex.

[36]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[37]  C. Cusick,et al.  The Superior Temporal Polysensory Region in Monkeys , 1997 .

[38]  J. Kaas Theories of Visual Cortex Organization in Primates , 1997 .

[39]  M. Rosa Visuotopic Organization of Primate Extrastriate Cortex , 1997 .

[40]  Keiji Tanaka,et al.  Columnar Organization in the Inferotemporal Cortex , 1997 .

[41]  K. Tanaka,et al.  Divergent Projections from the Anterior Inferotemporal Area TE to the Perirhinal and Entorhinal Cortices in the Macaque Monkey , 1996, The Journal of Neuroscience.

[42]  D. Perrett,et al.  Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. , 1996, Journal of neurophysiology.

[43]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[45]  Leslie G. Ungerleider,et al.  The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  D. V. Essen,et al.  Neural mechanisms of form and motion processing in the primate visual system , 1994, Neuron.

[47]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[48]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[49]  P S Goldman-Rakic,et al.  Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[50]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[51]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[52]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[53]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[54]  D. C. Essen,et al.  Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey. , 1990, Cold Spring Harbor symposia on quantitative biology.

[55]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. , 1988, Journal of neurophysiology.

[56]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. , 1988, Journal of neurophysiology.

[57]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[59]  John H. R. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[60]  E. Rolls,et al.  Functional subdivisions of the temporal lobe neocortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[62]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[63]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[64]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[65]  W. Maguire,et al.  Visuotopic organization of the prelunate gyrus in rhesus monkey , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  N. Mangini,et al.  Retinotopic organization of striate and extrastriate visual cortex in the mouse , 1980, The Journal of comparative neurology.

[67]  D. Pandya,et al.  Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey , 1980, Brain Research.

[68]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[69]  S. Zeki Representation of central visual fields in prestriate cortex of monkey. , 1969, Brain research.