Recent advances in flexible perovskite solar cells.

Flexible and low-weight thin-film perovskite solar cells have attracted considerable attention for developing large-area, roll-to-roll and differently shaped photovoltaics with improved power conversion efficiencies. In this review, we describe how researchers have adopted different approaches to enhance the device performance of the flexible perovskite solar cells to compete with rigid substrates with tailored electron/hole transport materials and flexible substrates.

[1]  Aldo Di Carlo,et al.  Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .

[2]  T. Ma,et al.  All-Solid Perovskite Solar Cells with HOCO-R-NH3+I– Anchor-Group Inserted between Porous Titania and Perovskite , 2014 .

[3]  Sung Cheol Yoon,et al.  Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .

[4]  Shiro Nishiwaki,et al.  Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. , 2011, Nature materials.

[5]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[6]  Yi-Ting Tsai,et al.  Efficient and stable back-illuminated sub-module dye-sensitized solar cells by decorating SiO2 porous layer with TiO2 electrode , 2013 .

[7]  Dong-Joo Kim,et al.  Flexible organic/inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array , 2012 .

[8]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[9]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[10]  Yongseok Jun,et al.  Flexible organo-metal halide perovskite solar cells on a Ti metal substrate , 2015 .

[11]  Wmm Erwin Kessels,et al.  Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells , 2012 .

[12]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[13]  A. Eicke,et al.  CIGS thin-film solar cells and modules on enamelled steel substrates , 2012 .

[14]  David G. Kwabi,et al.  Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells , 2014 .

[15]  Z. Fan,et al.  Electrical Property of ZnO Nanowire Field-Effect Transistor Characterized with a Scanning Probe , 2005 .

[16]  Jürgen H. Werner,et al.  Flexible solar cells for clothing , 2006 .

[17]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[18]  Yali Li,et al.  Aligned Si nanowire-based solar cells , 2011 .

[19]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[20]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[21]  Huisheng Peng,et al.  Integrated Polymer Solar Cell and Electrochemical Supercapacitor in a Flexible and Stable Fiber Format , 2014, Advanced materials.

[22]  Ronn Andriessen,et al.  ITO-free flexible organic solar cells with printed current collecting grids , 2011 .

[23]  C. Ferekides,et al.  Thin‐film CdS/CdTe solar cell with 15.8% efficiency , 1993 .

[24]  Ingrid Repins,et al.  CIGS absorbers and processes , 2010 .

[25]  Zhiyong Fan,et al.  Photovoltaics: solar cells on curtains. , 2008, Nature materials.

[26]  Formulations and processing of nanocrystalline TiO2 films for the different requirements of plastic, metal and glass dye solar cell applications. , 2013, Nanotechnology.

[27]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[28]  A. Di Carlo,et al.  Progress in flexible dye solar cell materials, processes and devices , 2014 .

[29]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[30]  C. Battaglia,et al.  9.4% Efficient Amorphous Silicon Solar Cell on High Aspect‐Ratio Glass Microcones , 2014, Advanced materials.

[31]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[32]  Daniel T. Schwartz,et al.  Electrodeposited Nanocomposite n–p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics , 2000 .

[33]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[34]  J. Mcclure,et al.  Design issues in the fabrication of CdS–CdTe solar cells on molybdenum foil substrates , 2003 .

[35]  Lydia Helena Wong,et al.  TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode , 2015 .

[36]  T. Nakada,et al.  Cd-Free Flexible Cu(In,Ga)Se2 Thin Film Solar Cells with ZnS(O,OH) Buffer Layers on Ti Foils , 2009 .

[37]  Sunho Jeong,et al.  All‐Solution‐Processed Indium‐Free Transparent Composite Electrodes based on Ag Nanowire and Metal Oxide for Thin‐Film Solar Cells , 2014 .

[38]  Masat Izu,et al.  Roll-to-roll manufacturing of amorphous silicon alloy solar cells with in situ cell performance diagnostics , 2003 .

[39]  S. Singh,et al.  New Triphenylamine-Based Organic Dyes with Different Numbers of Anchoring Groups for Dye-Sensitized Solar Cells , 2012 .

[40]  Shiro Nishiwaki,et al.  Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil , 2013, Nature Communications.

[41]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[42]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[43]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[44]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[45]  Monica Lira-Cantu,et al.  Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review , 2009 .

[46]  Andrea Reale,et al.  Fully plastic dye solar cell devices by low-temperature UV-irradiation of both the mesoporous TiO2 photo- and platinized counter-electrode , 2013 .

[47]  Jun Xu,et al.  Improved performance of silicon nanowire/cadmium telluride quantum dots/organic hybrid solar cells , 2015 .

[48]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[49]  David Cahen,et al.  High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. , 2013, The journal of physical chemistry letters.

[50]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[51]  Yue Zang,et al.  Microcavity‐Enhanced Light‐Trapping for Highly Efficient Organic Parallel Tandem Solar Cells , 2014, Advanced materials.

[52]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[53]  Hiroshi Sakai,et al.  Production technology for amorphous silicon-based flexible solar cells , 2001 .

[54]  R. Miles,et al.  Inorganic photovoltaic cells , 2007 .

[55]  C. Ferekides,et al.  Preparation and characterization of ZnTe as an interlayer for CdS/CdTe substrate thin film solar cells on flexible substrates , 2013 .

[56]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[57]  Zhibin Yang,et al.  Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells , 2014 .

[58]  J. Schermer,et al.  Epitaxial Lift‐Off for large area thin film III/V devices , 2005 .

[59]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[60]  Tzu-Ching Lin,et al.  Hybrid organic-inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface. , 2014, Nanoscale.

[61]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[62]  Stanford R. Ovshinsky,et al.  Band‐gap profiling for improving the efficiency of amorphous silicon alloy solar cells , 1989 .

[63]  A. Di Carlo,et al.  Outdoor and diurnal performance of large conformal flexible metal/plastic dye solar cells , 2014 .

[64]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[65]  Takao Yonehara,et al.  Epitaxial layer transfer by bond and etch back of porous Si , 1994 .

[66]  Xinyuan Xia,et al.  Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes. , 2012, ACS nano.

[67]  Peter Lund,et al.  Review of materials and manufacturing options for large area flexible dye solar cells , 2011 .

[68]  Seong Sik Shin,et al.  Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature , 2015 .

[69]  Martin A. Green,et al.  Silicon solar cells: evolution, high-efficiency design and efficiency enhancements , 1993 .

[70]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[71]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[72]  K. Temst,et al.  Enhanced asymmetric magnetization reversal in nanoscale Co/CoO arrays: competition between exchange bias and magnetostatic coupling. , 2003, Physical review letters.

[73]  K. Asai,et al.  Electronic and Excitonic Structures of Inorganic–Organic Perovskite-Type Quantum-Well Crystal (C4H9NH3)2PbBr4 , 2005 .

[74]  Hyun Suk Jung,et al.  Highly efficient and bending durable perovskite solar cells: toward a wearable power source , 2015 .

[75]  Peter Lund,et al.  Nanostructured dye solar cells on flexible substrates—Review , 2009 .

[76]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[77]  Mats Andersson,et al.  Polymer Photovoltaic Cells with Conducting Polymer Anodes , 2002 .

[78]  Armin G. Aberle,et al.  Progress with polycrystalline silicon thin-film solar cells on glass at UNSW , 2006 .

[79]  J. Durrant,et al.  Performance and Stability of Lead Perovskite/TiO2, Polymer/PCBM, and Dye Sensitized Solar Cells at Light Intensities up to 70 Suns , 2014, Advanced materials.

[80]  Seok‐In Na,et al.  Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes , 2008 .

[81]  K. Catchpole,et al.  Epitaxial lateral overgrowth of Si on (100) Si substrates by liquid phase epitaxy , 1998 .

[82]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[83]  Zhibin Yang,et al.  Integrating perovskite solar cells into a flexible fiber. , 2014, Angewandte Chemie.

[84]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[85]  F. Huang,et al.  Metallohalide perovskite–polymer composite film for hybrid planar heterojunction solar cells , 2015 .

[86]  Jiang Liu,et al.  Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer , 2014 .

[87]  H. Meng,et al.  Characteristics of a silicon nanowires/PEDOT:PSS heterojunction and its effect on the solar cell performance. , 2015, ACS applied materials & interfaces.

[88]  Konrad Wojciechowski,et al.  Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates , 2015 .

[89]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[90]  A. Carlo,et al.  Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties , 2011 .

[91]  Ronn Andriessen,et al.  Printable anodes for flexible organic solar cell modules , 2004 .

[92]  Soonil Hong,et al.  Electrostatically Self‐Assembled Nonconjugated Polyelectrolytes as an Ideal Interfacial Layer for Inverted Polymer Solar Cells , 2012, Advanced materials.

[93]  Xavier Mathew,et al.  CdTe/CdS Solar cells on flexible molybdenum substrates $ , 2004 .

[94]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[95]  David B. Mitzi,et al.  Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb) , 1996 .

[96]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[97]  G. Sharma,et al.  Synthesis of a Modified PC70BM and Its Application as an Electron Acceptor with Poly(3‐hexylthiophene) as an Electron Donor for Efficient Bulk Heterojunction Solar Cells , 2012 .

[98]  B. Rech,et al.  Polycrystalline silicon thin-film solar cells: Status and perspectives , 2013 .

[99]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[100]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[101]  Dongdong Li,et al.  Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays , 2010, Nanoscale research letters.

[102]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[103]  Man Gu Kang,et al.  Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges. , 2013, Chemical communications.

[104]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[105]  A. Ayón,et al.  Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS. , 2014, ACS applied materials & interfaces.

[106]  Henk J. Bolink,et al.  Flexible high efficiency perovskite solar cells , 2014 .

[107]  Eray S. Aydil,et al.  Nanowire-based dye-sensitized solar cells , 2005 .

[108]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[109]  Tzung-Fang Guo,et al.  High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate. , 2014, Physical chemistry chemical physics : PCCP.

[110]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[111]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[112]  Se Stephen Potts,et al.  Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges , 2011 .

[113]  Lifeng Liu,et al.  Platinum nanoparticle interlayer promoted improvement in photovoltaic performance of silicon/PEDOT:PSS hybrid solar cells , 2015 .

[114]  Jccm Boukje Huijben,et al.  26.1% thin-film GaAs solar cell using epitaxial lift-off , 2009 .

[115]  S. Guha,et al.  Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies , 1997 .

[116]  Wei Wang,et al.  Transparent, Double‐Sided, ITO‐Free, Flexible Dye‐Sensitized Solar Cells Based on Metal Wire/ZnO Nanowire Arrays , 2012 .

[117]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[118]  Bohr‐Ran Huang,et al.  Efficiency improvement of silicon nanostructure-based solar cells , 2014, Nanotechnology.

[119]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[120]  Johan Nijs,et al.  Porous silicon as an intermediate layer for thin-film solar cell , 2001 .

[121]  M. Wuttig,et al.  Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells , 2006 .

[122]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[123]  Ayyappanpillai Ajayaghosh,et al.  Functional π-gelators and their applications. , 2014, Chemical reviews.