Magnetic and acoustic tapping mode microscopy of liquid phase phospholipid bilayers and DNA molecules

We have constructed a fluid cell for an atomic force microscope that operates in tapping mode using either an oscillating piezo or magnetic drive. This fluid cell allows direct comparison of the image quality using the two drive mechanisms over identical areas of a sample without fluid or cantilever exchange. We found that the magnetically driven cantilever’s tuning curve was very similar to the thermal noise power spectrum, allowing an accurate determination of the cantilever resonance frequency. This is in contrast to the piezo driven tuning curve, which contained a number of peaks that appeared to be a convolution of the true cantilever resonance with the complicated acoustic spectrum of the fluid cell. We imaged two biologically relevant samples: DNA molecules and liquid phase phospholipid bilayers. For both samples, we found that the image quality, as measured by feature height, lateral resolution, and image stability, was independent of the drive method. This suggests that, despite the apparent diff...

[1]  P. Hansma,et al.  An atomic-resolution atomic-force microscope implemented using an optical lever , 1989 .

[2]  Paul K. Hansma,et al.  Imaging Globular and Filamentous Proteins in Physiological Buffer Solutions with Tapping Mode Atomic Force Microscopy , 1995 .

[3]  Paul K. Hansma,et al.  Studies of vibrating atomic force microscope cantilevers in liquid , 1996 .

[4]  U. Valdré,et al.  Atomic force microscopy observations of acyl chains in phospholipids , 1996, Journal of microscopy.

[5]  Jan Greve,et al.  Tapping mode atomic force microscopy in liquid , 1994 .

[6]  L. Bourdieu,et al.  Molecular Positional Order in Langmuir-Blodgett Films by Atomic Force Microscopy , 1993, Science.

[7]  H. Hansma,et al.  Atomic force microscopy of DNA in aqueous solutions. , 1993, Nucleic acids research.

[8]  Y. Lyubchenko,et al.  Visualization of supercoiled DNA with atomic force microscopy in situ. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Z. Shao,et al.  High‐resolution atomic‐force microscopy of DNA: the pitch of the double helix , 1995, FEBS letters.

[10]  N. Amer,et al.  Novel optical approach to atomic force microscopy , 1988 .

[11]  J. Garnaes,et al.  Surface Order and Stability of Langmuir-Blodgett Films , 1992, Science.

[12]  D. Sarid Scanning Force Microscopy: With Applications To Electric, Magnetic, And Atomic Forces , 1991 .

[13]  H. Hansma,et al.  Motion and enzymatic degradation of DNA in the atomic force microscope. , 1994, Biophysical journal.

[14]  J. Rabe,et al.  Vertical dimension of hydrated biological samples in tapping mode scanning force microscopy. , 1996, Biophysical journal.

[15]  Z. Shao,et al.  Progress in high resolution atomic force microscopy in biology , 1995, Quarterly Reviews of Biophysics.

[16]  J. Zasadzinski,et al.  The structure and stability of phospholipid bilayers by atomic force microscopy. , 1995, Biophysical journal.

[17]  M. Ward,et al.  Atomic force microscopy of insulin single crystals: direct visualization of molecules and crystal growth. , 1996, Biophysical journal.

[18]  R. Harrington,et al.  Kinked DNA , 1997, Nature.

[19]  Manfred Radmacher,et al.  Atomic force microscope with magnetic force modulation , 1994 .

[20]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[21]  C. Siegerist,et al.  Reproducible Imaging and Dissection of Plasmid DNA Under Liquid with the Atomic Force Microscope , 1992, Science.

[22]  M. Radmacher,et al.  Protein tracking and detection of protein motion using atomic force microscopy. , 1996, Biophysical journal.

[23]  S. Lindsay,et al.  A magnetically driven oscillating probe microscope for operation in liquids , 1996 .

[24]  T. Thundat,et al.  Atomic force microscopy of deoxyribonucleic acid strands adsorbed on mica: The effect of humidity on apparent width and image contrast , 1992 .

[25]  L. Monaco,et al.  Nanoscopic structure of DNA condensed for gene delivery. , 1997, Nucleic acids research.

[26]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .

[27]  Paul K. Hansma,et al.  Biological applications of the AFM: From single molecules to organs , 1997 .

[28]  Paul K. Hansma,et al.  Tapping mode atomic force microscopy in liquids , 1994 .

[29]  H. Murakami,et al.  New scanning tunneling microscopy tip for measuring surface topography , 1990 .

[30]  K. Schiffmann Investigation of fabrication parameters for the electron-beam-induced deposition of contamination tips used in atomic force microscopy , 1993 .

[31]  Paul K. Hansma,et al.  Imaging microtubules in buffer solution using tapping mode atomic force microscopy , 1995, Photonics West.

[32]  Deron A. Walters,et al.  Atomic force microscope for small cantilevers , 1997, Photonics West.

[33]  J. E. Stern,et al.  Magnetic force microscopy: General principles and application to longitudinal recording media , 1990 .

[34]  Mark A. Lantz,et al.  Force microscopy imaging in liquids using ac techniques , 1994 .

[35]  J. Peltonen,et al.  Atomic force microscope images of lipid layers spread from vesicle suspensions. , 1995, Biochimica et biophysica acta.

[36]  D. Small The Physical Chemistry of Lipids , 1986 .

[37]  A. Engel,et al.  Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. , 1999, Biophysical journal.

[38]  D. Keller,et al.  Scanning force microscopy under aqueous solutions. , 1997, Current opinion in structural biology.

[39]  Hermann E. Gaub,et al.  Single molecule force spectrometer with magnetic force control and inductive detection , 1999 .

[40]  P K Hansma,et al.  Escherichia coli RNA polymerase activity observed using atomic force microscopy. , 1997, Biochemistry.

[41]  B. Ames,et al.  The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. , 1960, The Journal of biological chemistry.

[42]  P K Hansma,et al.  Direct observation of enzyme activity with the atomic force microscope. , 1994, Science.

[43]  David Keller,et al.  Imaging steep, high structures by scanning force microscopy with electron beam deposited tips , 1992 .

[44]  T. Jovin,et al.  The scanning force microscopy of DNA in air and in n‐propanol using new spreading agents , 1994, FEBS letters.