Scanning tunneling microscopy study and nanomanipulation of graphene-coated water on mica.

We study interfacial water trapped between a sheet of graphene and a muscovite (mica) surface using Raman spectroscopy and ultrahigh vacuum scanning tunneling microscopy (UHV-STM) at room temperature. We are able to image the graphene-water interface with atomic resolution, revealing a layered network of water trapped underneath the graphene. We identify water layer numbers with a carbon nanotube height reference. Under normal scanning conditions, the water structures remain stable. However, at greater electron energies, we are able to locally manipulate the water using the STM tip.

[1]  Yaochun Shen,et al.  Icelike Water Monolayer Adsorbed on Mica at Room Temperature , 1998 .

[2]  Kai Yan,et al.  Toward clean and crackless transfer of graphene. , 2011, ACS nano.

[3]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[4]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[5]  K. Morgenstern,et al.  Electron damage to supported ice investigated by scanning tunneling microscopy and spectroscopy. , 2008, Physical review letters.

[6]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[7]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[8]  K. Rieder,et al.  Dissociation of water molecules with the scanning tunnelling microscope , 2002 .

[9]  J. Crain,et al.  Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy , 2007, 0711.2523.

[10]  J. Heath,et al.  The microscopic structure of adsorbed water on hydrophobic surfaces under ambient conditions. , 2011, Nano letters.

[11]  Changgu Lee,et al.  Frictional Characteristics of Atomically Thin Sheets , 2010, Science.

[12]  M. Salmeron,et al.  Molecular structure of water at interfaces: wetting at the nanometer scale. , 2006, Chemical reviews.

[13]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[14]  Ado Jorio,et al.  Raman Spectroscopy in Graphene Related Systems , 2011 .

[15]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[16]  Jing Kong,et al.  Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. , 2010, Nano letters.

[17]  G. Cicero,et al.  Electronic effects in the IR spectrum of water under confinement. , 2009, Journal of Physical Chemistry B.

[18]  First-Principles Thermodynamics of Graphene Growth on Cu Surfaces , 2011, 1101.3851.

[19]  S. Granick,et al.  Confined liquid controversies near closure , 2010 .

[20]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[21]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[22]  B. D. Kay,et al.  No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene. , 2009, Journal of the American Chemical Society.

[23]  J. Israelachvili,et al.  Molecular layering of water at surfaces and origin of repulsive hydration forces , 1983, Nature.

[24]  P. Fenter,et al.  Molecular-scale density oscillations in water adjacent to a mica surface. , 2001, Physical review letters.

[25]  G. Matei,et al.  Dynamic solidification in nanoconfined water films. , 2010, Physical review letters.

[26]  S Das Sarma,et al.  Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering. , 2008, Physical review letters.

[27]  N. Aluru,et al.  Inducing electronic changes in graphene through silicon (100) substrate modification. , 2011, Nano letters.

[28]  A. Zettl,et al.  Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles , 2010, Science.

[29]  October I Physical Review Letters , 2022 .

[30]  Håkan Wennerström,et al.  Role of hydration and water structure in biological and colloidal interactions , 1996, Nature.

[31]  Carl W. Magnuson,et al.  Transfer of CVD-grown monolayer graphene onto arbitrary substrates. , 2011, ACS nano.

[32]  J. Israelachvili,et al.  The hydrophobic interaction is long range, decaying exponentially with distance , 1982, Nature.

[33]  Vivek B Shenoy,et al.  Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene , 2010, Science.

[34]  Robert M. Wallace,et al.  The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2 , 2011 .

[35]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[36]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[37]  G. Mikitik,et al.  Electron energy spectrum and the Berry phase in a graphite bilayer , 2007, 0709.1803.

[38]  J. Heath,et al.  Graphene Visualizes the First Water Adlayers on Mica at Ambient Conditions , 2010, Science.

[39]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[40]  D. Majolino,et al.  A new insight on the hydrogen bonding structures of nanoconfined water: a Raman study , 2008 .

[41]  J. Lyding,et al.  Ultrahigh-vacuum scanning tunneling microscopy and spectroscopy of single-walled carbon nanotubes on hydrogen-passivated Si(100) surfaces , 2003 .

[42]  U. Raviv,et al.  Fluidity of Bound Hydration Layers , 2002, Science.

[43]  Peter Sutter,et al.  Graphene on Pt(111): Growth and Substrate interaction , 2009 .

[44]  N. Mohanty,et al.  Impermeable graphenic encasement of bacteria. , 2011, Nano letters.

[45]  Journal of Chemical Physics , 1932, Nature.

[46]  Raman and optical characterization of multilayer turbostratic graphene grown via chemical vapor deposition , 2010, 1011.1683.

[47]  Patricia A. Thiel,et al.  The interaction of water with solid surfaces: Fundamental aspects , 1987 .

[48]  M. Parrinello,et al.  Two Dimensional Ice Adsorbed on Mica Surface , 1997 .

[49]  C. N. Lau,et al.  Raman spectroscopy of ripple formation in suspended graphene. , 2009, Nano letters.

[50]  Hugen Yan,et al.  Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[51]  J. Heath,et al.  Atomic force microscopy characterization of room-temperature adlayers of small organic molecules through graphene templating. , 2011, Journal of the American Chemical Society.

[52]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[53]  E. Pop,et al.  Effects of polycrystalline cu substrate on graphene growth by chemical vapor deposition. , 2011, Nano letters.

[54]  John R. Tucker,et al.  Nanoscale patterning and oxidation of H‐passivated Si(100)‐2×1 surfaces with an ultrahigh vacuum scanning tunneling microscope , 1994 .

[55]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[56]  R. Mcdonald,et al.  Vibrations of the OH Ions in Muscovite , 1963 .

[57]  R. Piner,et al.  Transfer of large-area graphene films for high-performance transparent conductive electrodes. , 2009, Nano letters.

[58]  I. Sokolov,et al.  Reversible dewetting of a molecularly thin fluid water film in a soft graphene-mica slit pore. , 2012, Nano letters.

[59]  G. Sposito,et al.  Structure of water adsorbed on a mica surface. , 2002, Physical review letters.

[60]  J R Tucker,et al.  Atomic-Scale Desorption Through Electronic and Vibrational Excitation Mechanisms , 1995, Science.

[61]  C. Jin,et al.  Graphene annealing: how clean can it be? , 2012, Nano letters.

[62]  M. Salmeron,et al.  Wetting and capillary phenomena of water on mica , 1998 .

[63]  K. Rieder,et al.  Formation of the cyclic ice hexamer via excitation of vibrational molecular modes by the scanning tunneling microscope , 2002 .

[64]  M Heim,et al.  Scanning tunneling microscopy of insulators and biological specimens based on lateral conductivity of ultrathin water films. , 1994, Science.

[65]  E. Williams,et al.  Atomic structure of graphene on SiO2. , 2007, Nano letters.

[66]  A. Greentree,et al.  Breaking time reversal symmetry with light , 2010 .

[67]  Stéphane Berciaud,et al.  Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. , 2009, Nano letters.

[68]  J. Carrasco,et al.  Manipulation and control of hydrogen bond dynamics in absorbed ice nanoclusters. , 2008, Physical review letters.

[69]  J. Lyding,et al.  The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. , 2009, Nature materials.

[70]  Bong Hoon Kim,et al.  Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. , 2011, Nano letters.

[71]  M. D. Ellison,et al.  Interaction of water with single-walled carbon nanotubes: reaction and adsorption. , 2005, The journal of physical chemistry. B.

[72]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[73]  G. Brown How Minerals React with Water , 2001, Science.

[74]  P. Kim,et al.  Water-gated charge doping of graphene induced by mica substrates. , 2012, Nano letters.

[75]  Pinshane Y. Huang,et al.  Grains and grain boundaries in single-layer graphene atomic patchwork quilts , 2010, Nature.