Bandwidth theorem for random graphs

A graph G is said to have bandwidth at most b, if there exists a labeling of the vertices by 1,2,...,n, so that |i-j|=

[1]  Ali Shokoufandeh,et al.  On a tiling conjecture of Komlo's for 3-chromatic graphs , 2004, Discret. Math..

[2]  Benny Sudakov,et al.  On the asymmetry of random regular graphs and random graphs , 2002, Random Struct. Algorithms.

[3]  S Koilraj,et al.  Labelings of graphs , 2008 .

[4]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[5]  Victor Alexandrov,et al.  Problem section , 2007 .

[6]  L. Beineke,et al.  Selected Topics in Graph Theory 2 , 1985 .

[7]  Benny Sudakov,et al.  Local resilience of graphs , 2007, Random Struct. Algorithms.

[8]  Yoshiharu Kohayakawa,et al.  Almost Spanning Subgraphs of Random Graphs After Adversarial Edge Removal , 2009, Combinatorics, Probability and Computing.

[9]  P. Erdös On the structure of linear graphs , 1946 .

[10]  Daniela Kühn,et al.  The minimum degree threshold for perfect graph packings , 2009, Comb..

[11]  Noga Alon,et al.  AlmostH-factors in dense graphs , 1992, Graphs Comb..

[12]  Endre Szemerédi,et al.  Proof of the Seymour conjecture for large graphs , 1998 .

[13]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[14]  Wojciech Samotij,et al.  Local resilience of almost spanning trees in random graphs , 2011, Random Struct. Algorithms.

[15]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[16]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[17]  Frank Harary,et al.  Graph Theory , 2016 .

[18]  János Komlós,et al.  Tiling Turán Theorems , 2000, Comb..

[19]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[20]  Stefanie Gerke,et al.  The sparse regularity lemma and its applications , 2005, BCC.

[21]  Ali Shokoufandeh,et al.  Proof of a tiling conjecture of Komlós , 2003, Random Struct. Algorithms.

[22]  Stewart Priddy,et al.  The problem session , 2007 .

[23]  Julia Böttcher,et al.  Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs , 2009, Eur. J. Comb..

[24]  János Komlós,et al.  Proof of the Alon-Yuster conjecture , 2001, Discret. Math..

[25]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[26]  Mathias Schacht,et al.  Spanning 3-colourable subgraphs of small bandwidth in dense graphs , 2008, J. Comb. Theory, Ser. B.

[27]  Jfinos Koml s Proof of the Seymour Conjecture for Large Graphs , 2005 .

[28]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[29]  Domingos Dellamonica,et al.  On the Resilience of Long Cycles in Random Graphs , 2008, Electron. J. Comb..

[30]  P. Lax Proof of a conjecture of P. Erdös on the derivative of a polynomial , 1944 .

[31]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[32]  Benny Sudakov,et al.  Local Resilience and Hamiltonicity Maker–Breaker Games in Random Regular Graphs , 2009, Combinatorics, Probability and Computing.

[33]  M. Schacht,et al.  Proof of the bandwidth conjecture of Bollobás and Komlós , 2009 .

[34]  Michael Krivelevich,et al.  On two Hamilton cycle problems in random graphs , 2008 .

[35]  Benny Sudakov,et al.  Resilient Pancyclicity of Random and Pseudorandom Graphs , 2009, SIAM J. Discret. Math..

[36]  D. Kuhn,et al.  Surveys in Combinatorics 2009: Embedding large subgraphs into dense graphs , 2009, 0901.3541.