Opportunities for intensification of Fischer–Tropsch synthesis through reduced formation of methane over cobalt catalysts in microreactors

Due to the global growth in production of synthetic fuels via the Gas-to-Liquid (GTL), Coal-To-Liquid (CTL) and Biomass-To-Liquid (BTL) processes, academic and industrial interest in Fischer–Tropsch synthesis (FTS) research has increased during the past decade. The undesired product of FTS is methane and it is formed in amounts higher than expected according to the current understanding of the FTS mechanism. Therefore, it is important to gain better understanding of methane formation in order to optimize the FTS process. In this review we discuss the reasons responsible for higher than expected methane selectivity under FTS conditions over cobalt-based FTS catalysts and describe novel microreactors for use in FTS. These novel reactors could help improve reaction selectivity and yield, as well as offer significant economic benefits. Recommendations are given for intensification of FTS in terms of product selectivity by improved selection of catalysts, process conditions and reactor configurations.

[1]  P. Roussel,et al.  Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer–Tropsch synthesis , 2011 .

[2]  W. Marsden I and J , 2012 .

[3]  Robert Güttel,et al.  Fischer–Tropsch synthesis in milli-structured fixed-bed reactors: Experimental study and scale-up considerations , 2010 .

[4]  Jianli Hu,et al.  Fischer-Tropsch Synthesis on Ceramic Monolith-Structured Catalysts , 2009 .

[5]  F. G. Botes,et al.  Proposal of a new product characterization model for the iron-based low-temperature Fischer-Tropsch synthesis , 2007 .

[6]  Enrique Iglesia,et al.  An Investigation of the Effects of Water on Rate and Selectivity for the Fischer-Tropsch Synthesis on Cobalt-Based Catalysts , 2002 .

[7]  Hans Schulz,et al.  Polymerisation kinetics of the Fischer-Tropsch CO hydrogenation using iron and cobalt based catalysts , 1999 .

[8]  B. Davis,et al.  Fischer-Tropsch synthesis: carbon-14 tracer study of alkene incorporation , 1990 .

[9]  W. Shafer,et al.  Fischer–Tropsch synthesis: effect of ammonia impurities in syngas feed over a cobalt/alumina catalyst , 2013 .

[10]  I. Puskas,et al.  Comments about the causes of deviations from the Anderson–Schulz–Flory distribution of the Fischer–Tropsch reaction products , 2003 .

[11]  Yongqing Zhang,et al.  FISCHER-TROPSCH SYNTHESIS: DEACTIVATION OF NOBLE METAL PROMOTED CO/AL2O3 CATALYSTS , 2002 .

[12]  M. Dry Catalytic aspects of industrial Fischer-Tropsch synthesis , 1982 .

[13]  D. Bazin,et al.  Microstructure of Supported Cobalt Fischer-Tropsch Catalysts , 2009 .

[14]  Jia Yang,et al.  Fischer–Tropsch synthesis: A review of the effect of CO conversion on methane selectivity , 2014 .

[15]  Mario Montes,et al.  Fischer–Tropsch synthesis in microchannels , 2011 .

[16]  Steffen Schirrmeister,et al.  Microstructured Reactors in Heterogenous Catalysis , 2007 .

[17]  F. M. Meeuse,et al.  Is a monolithic loop reactor a viable option for Fischer-Tropsch synthesis? , 2003 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Anders Holmen,et al.  Fischer–Tropsch synthesis on monolithic catalysts with oil circulation , 2005 .

[20]  Secondary effects in the Fischer-Tropsch synthesis , 1982 .

[21]  Pravat K. Swain,et al.  Biomass to liquid: A prospective challenge to research and development in 21st century , 2011 .

[22]  G. Jacobs,et al.  Fischer–Tropsch synthesis: effect of water on the catalytic properties of a ruthenium promoted Co/TiO2 catalyst , 2002 .

[23]  L. Kiwi-Minsker,et al.  Microstructured catalytic reactors , 2010 .

[24]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[25]  G. Froment,et al.  Kinetic Model of Fischer–Tropsch Synthesis in a Slurry Reactor on Co–Re/Al2O3 Catalyst , 2013 .

[26]  G. Jacobs,et al.  Fischer–Tropsch synthesis: Effect of Pd, Pt, Re, and Ru noble metal promoters on the activity and selectivity of a 25%Co/Al2O3 catalyst , 2012 .

[27]  L. Gladden,et al.  Dynamic MRI visualization of two‐phase flow in a ceramic monolith , 2002 .

[28]  H. Schulz Principles of Fischer–Tropsch synthesis—Constraints on essential reactions ruling FT-selectivity , 2013 .

[29]  G. V. D. Laan,et al.  Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review , 1999 .

[30]  Nicolaus Dahmen,et al.  Cost estimate for biosynfuel production via biosyncrude gasification , 2009 .

[31]  C. H. Bartholomew,et al.  Multiple reaction states in CO hydrogenation on alumina-supported cobalt catalysts , 1989 .

[32]  W. Shafer,et al.  Fischer–Tropsch synthesis: Activity of metallic phases of cobalt supported on silica , 2013 .

[33]  De Chen,et al.  Monolithic, microchannel and carbon nanofibers/carbon felt reactors for syngas conversion by Fischer-Tropsch synthesis , 2013 .

[34]  J. Nijenhuis,et al.  Fischer–Tropsch reaction–diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability , 2012 .

[35]  G. Jacobs,et al.  Effect of CO Conversion on the Product Distribution of a Co/Al2O3 Fischer–Tropsch Synthesis Catalyst Using a Fixed Bed Reactor , 2012, Catalysis Letters.

[36]  G. Jacobs,et al.  Effect of process conditions on the product distribution of Fischer–Tropsch synthesis over a Re-promoted cobalt-alumina catalyst using a stirred tank slurry reactor , 2014 .

[37]  W. Ying,et al.  Product distributions of Fischer-Tropsch synthesis over Co/AC catalyst , 2011 .

[38]  Wennan Zhang,et al.  Automotive fuels from biomass via gasification , 2010 .

[39]  Matthew H. M. Lim,et al.  MRI visualisation of two-phase flow in structured supports and trickle-bed reactors , 2003 .

[40]  H. Schulz Selforganization in Fischer–Tropsch synthesis with iron- and cobalt catalysts , 2014 .

[41]  S. Piche,et al.  Fischer–Tropsch synthesis in milli-fixed bed reactor: Comparison with centimetric fixed bed and slurry stirred tank reactors , 2011 .

[42]  Gert Jan Kramer,et al.  Fischer–Tropsch technology — from active site to commercial process , 1999 .

[43]  Daniel R. Palo,et al.  Catalyst screening and kinetic studies using microchannel reactors , 2007 .

[44]  De Chen,et al.  Microkinetic modelling of the formation of C1 and C2 products in the Fischer–Tropsch synthesis over cobalt catalysts , 2006 .

[45]  R. Zennaro,et al.  Detailed Kinetics of the Fischer–Tropsch Synthesis on Cobalt Catalysts Based on H-Assisted CO Activation , 2011 .

[46]  H. Schulz Major and Minor Reactions in Fischer–Tropsch Synthesis on Cobalt Catalysts , 2003 .

[47]  Carlo Giorgio Visconti,et al.  Monolithic catalysts with high thermal conductivity for the Fischer–Tropsch synthesis in tubular reactors , 2011 .

[48]  A. Dalai,et al.  Fischer–Tropsch synthesis: A review of water effects on the performances of unsupported and supported Co catalysts , 2008 .

[49]  J. Bitter,et al.  On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis. , 2009, Journal of the American Chemical Society.

[50]  José Luis Valverde,et al.  Fischer-Tropsch diesel production over calcium-promoted Co/alumina catalyst: Effect of reaction conditions , 2011 .

[51]  F. Botes Influences of Water and Syngas Partial Pressure on the Kinetics of a Commercial Alumina-Supported Cobalt Fischer-Tropsch Catalyst , 2009 .

[52]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[53]  J. H. Wilson,et al.  Non-ASF product distributions due to secondary reactions during Fischer-Tropsch synthesis , 1996 .

[54]  Jc Jaap Schouten,et al.  Mechanistic pathway for methane formation over an iron-based catalyst , 2008 .

[55]  G. Jacobs,et al.  Effect of Cobalt Particle Size on the Catalyst Intrinsic Activity for Fischer–Tropsch Synthesis , 2014, Catalysis Letters.

[56]  Yongqing Zhang,et al.  Fischer-Tropsch synthesis: effect of water on the catalytic properties of a Co/SiO2 catalyst , 2002 .

[57]  W. Shafer,et al.  Deutero-1-pentene tracer studies for iron and cobalt Fischer–Tropsch synthesis , 2011 .

[58]  Wei Chu,et al.  Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. , 2007, Chemical reviews.

[59]  Anders Holmen,et al.  Fischer-tropsch synthesis on monolithic catalysts of different materials , 2001 .

[60]  C. Mims,et al.  The Effect of Water on the Cobalt-Catalyzed Fischer–Tropsch Synthesis , 2002 .

[61]  J. Wood,et al.  A comparative study of residence time distribution and selectivity in a monolith CDC reactor and a trickle bed reactor , 2005 .

[62]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[63]  Burtron H. Davis,et al.  Overview of reactors for liquid phase Fischer–Tropsch synthesis , 2002 .

[64]  Jia Yang,et al.  Compact reactor for Fischer–Tropsch synthesis based on hierarchically structured Co catalysts: Towards better stability , 2013 .

[65]  R. Zennaro,et al.  An experimental investigation of Fischer–Tropsch synthesis over washcoated metallic structured supports , 2009 .

[66]  Mario Montes,et al.  Kinetic analysis and microstructured reactors modeling for the Fischer–Tropsch synthesis over a Co–Re/Al2O3 catalyst , 2013 .

[67]  Alexis T. Bell,et al.  Effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer–Tropsch Synthesis , 2012 .

[68]  Maria Sudiro,et al.  Production of synthetic gasoline and diesel fuel by alternative processes using natural gas and coal: Process simulation and optimization , 2009 .

[69]  E. Steen,et al.  Fischer‐Tropsch Catalysts for the Biomass‐to‐Liquid (BTL)‐Process , 2008 .

[70]  J. C. Schouten,et al.  A Mechanistic Study of the Fischer–Tropsch Synthesis Using Transient Isotopic Tracing. Part-1: Model Identification and Discrimination , 2003 .

[71]  Yong Wang,et al.  A compact and high throughput reactor of monolithic‐structured catalyst bed for conversion of syngas to liquid fuels , 2012 .

[72]  F. G. Botes,et al.  A comparison of cobalt and iron based slurry phase Fischer–Tropsch synthesis , 2013 .

[73]  Enrique Iglesia,et al.  Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts , 1997 .

[74]  M. Kassing,et al.  Preparation and Catalytic Evaluation of Cobalt-Based Monolithic and Powder Catalysts for Fischer−Tropsch Synthesis , 2008 .

[75]  Anders Holmen,et al.  Deactivation of cobalt based Fischer―Tropsch catalysts: A review , 2010 .

[76]  Rajamani Krishna,et al.  Strategies for multiphase reactor selection , 1994 .

[77]  Freek Kapteijn,et al.  Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. , 2006, Journal of the American Chemical Society.

[78]  Anders Holmen,et al.  SSITKA analysis of CO hydrogenation on Zn modified cobalt catalysts , 2013 .

[79]  B. Davis,et al.  Fischer–Tropsch synthesis: accounting for chain-length related phenomena , 2004 .

[80]  S. Reyes,et al.  Transport-enhanced α-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis , 1991 .

[81]  D. Bukur,et al.  Fischer–Tropsch synthesis on Co/ZnO – Two step activation procedure for improved performance , 2014 .

[82]  Freek Kapteijn,et al.  Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels , 2005 .

[83]  Andrew G. Glen,et al.  APPL , 2001 .

[84]  S. Ledakowicz,et al.  Kinetic model of fischer-tropsch synthesis selectivity in the slurry phase , 1992 .

[85]  F. Botes,et al.  The Development of a Macro Kinetic Model for a Commercial Co/Pt/Al2O3 Fischer−Tropsch Catalyst , 2009 .

[86]  Thomas Turek,et al.  Comparison of different reactor types for low temperature Fischer–Tropsch synthesis: A simulation study , 2009 .

[87]  C. Erkey,et al.  Diffusivities of synthesis gas and n-alkanes in Fischer-Tropsch wax , 1990 .

[88]  E. Steen,et al.  On the effect of water during Fischer–Tropsch synthesis with a ruthenium catalyst , 2002 .

[89]  F. Kapteijn,et al.  Using monolithic catalysts for highly selective Fischer–Tropsch synthesis , 2003 .

[90]  S. Järås,et al.  On the selectivity of cobalt-based Fischer-Tropsch catalysts : Evidence for a common precursor for methane and long-chain hydrocarbons , 2010 .

[91]  Hans Schulz,et al.  Kinetic modelling of Fischer–Tropsch product distributions , 1999 .

[92]  Hans Schulz,et al.  Reactions of α-olefins of different chain length added during Fischer–Tropsch synthesis on a cobalt catalyst in a slurry reactor , 1999 .

[93]  De Chen,et al.  Carbon Nanofiber Supported Cobalt Catalysts for Fischer–Tropsch Synthesis with High Activity and Selectivity , 2006 .

[94]  Freek Kapteijn,et al.  Fischer–Tropsch synthesis using monolithic catalysts , 2005 .

[95]  M. Centeno,et al.  Fischer-tropsch catalyst deposition on metallic structured supports , 2007 .

[96]  Jia Yang,et al.  Reaction mechanism of CO activation and methane formation on Co Fischer-Tropsch catalyst: A combined DFT, transient, and steady-state kinetic modeling , 2013 .

[97]  Rajamani Krishna,et al.  Fundamentals and selection of advanced Fischer-Tropsch reactors , 1999 .

[98]  Ian C. Yates,et al.  The hydrocarbon selectivity of cobalt Fischer-Tropsch catalysts , 1991 .

[99]  Freek Kapteijn,et al.  Trends in Fischer–Tropsch Reactor Technology—Opportunities for Structured Reactors , 2003 .

[100]  Wenping Ma,et al.  Fischer–Tropsch synthesis: Kinetics and water effect study over 25%Co/Al2O3 catalysts , 2014 .

[101]  Jacob A. Moulijn,et al.  Structured Packings for Multiphase Catalytic Reactors , 2008 .