SIMULATION OF DIFFERENTIALS IN FOUR-WHEEL DRIVE VEHICLES USING MULTIBODY DYNAMICS

The dynamic performance of vehicle drivetrains is significantly influenced by differentials which are subjected to complex phenomena. In this paper, detailed models of TORSEN differentials are presented using a flexible multibody simulation approach, based on the nonlinear finite element method. A central and a front TORSEN differential have been studied and the numerical results have been compared with experimental data obtained on test bench. The models are composed of several rigid and flexible bodies mainly constrainted by flexible gear pair joints and contact conditions. The three differentials of a four wheel drive vehicle have been assembled in a full drivetrain in a simplified vehicle model with modeling of driveshafts and tires. These simulations enable to observe the four working modes of the differentials with a good accuracy.Copyright © 2011 by ASME