RUMD: A general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles
暂无分享,去创建一个
Jeppe C. Dyre | Nicholas P. Bailey | Trond S. Ingebrigtsen | Jesper Schmidt Hansen | Arno A. Veldhorst | Lasse Bohling | Claire A. Lemarchand | Andreas E. Olsen | Andreas K. Bacher | Lorenzo Costigliola | Ulf R. Pedersen | Heine Larsen | Thomas B. Schroder | H. Larsen | J. S. Hansen | T. Schrøder | J. Dyre | C. Lemarchand | N. Bailey | A. Olsen | T. Ingebrigtsen | L. Costigliola | A. Bacher | L. Bøhling | A. A. Veldhorst | Lorenzo Costigliola
[1] M J Harvey,et al. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. , 2009, Journal of chemical theory and computation.
[2] Diwakar Shukla,et al. OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation. , 2013, Journal of chemical theory and computation.
[3] S. Toxvaerd,et al. NVU dynamics. II. Comparing to four other dynamics. , 2010, The Journal of chemical physics.
[4] Berend Smit,et al. Understanding molecular simulation: from algorithms to applications , 1996 .
[5] Rastko Sknepnek,et al. A Graphics Processing Unit Implementation of Coulomb Interaction in Molecular Dynamics. , 2010, Journal of chemical theory and computation.
[6] M J Harvey,et al. An Implementation of the Smooth Particle Mesh Ewald Method on GPU Hardware. , 2009, Journal of chemical theory and computation.
[7] Laxmikant V. Kalé,et al. Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..
[8] Filippo Federici Canova,et al. Computational Physics on Graphics Processing Units , 2012, PARA.
[9] J. Banavar,et al. Computer Simulation of Liquids , 1988 .
[10] John D. Owens,et al. GPU Computing , 2008, Proceedings of the IEEE.
[11] Gianni De Fabritiis,et al. A survey of computational molecular science using graphics processing units , 2012 .
[12] Karsten Wedel Jacobsen,et al. A semi-empirical effective medium theory for metals and alloys , 1996 .
[13] Michela Taufer,et al. Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs) , 2011, J. Comput. Chem..
[14] Robert M Farber,et al. Topical perspective on massive threading and parallelism. , 2011, Journal of molecular graphics & modelling.
[15] J. S. Hansen,et al. Simplistic Coulomb forces in molecular dynamics: comparing the Wolf and shifted-force approximations. , 2011, The journal of physical chemistry. B.
[16] Berk Hess,et al. A flexible algorithm for calculating pair interactions on SIMD architectures , 2013, Comput. Phys. Commun..
[17] Klaus Schulten,et al. Accelerating Molecular Modeling Applications with GPU Computing , 2009 .
[18] Pak Lui,et al. Strong scaling of general-purpose molecular dynamics simulations on GPUs , 2014, Comput. Phys. Commun..
[19] Jonathan D Hirst,et al. Molecular Dynamics Simulations Using Graphics Processing Units , 2011, Molecular informatics.
[20] Zheyong Fan,et al. Accelerated molecular dynamics force evaluation on graphics processing units for thermal conductivity calculations , 2012, Comput. Phys. Commun..
[21] Joshua A. Anderson,et al. General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..
[22] Weiguo Liu,et al. Accelerating molecular dynamics simulations using Graphics Processing Units with CUDA , 2008, Comput. Phys. Commun..
[23] O. J. Heilmann,et al. Time-reversible molecular dynamics algorithms with bond constraints. , 2009, The Journal of chemical physics.
[24] J. Dyre,et al. NVU dynamics. III. Simulating molecules at constant potential energy. , 2012, The Journal of chemical physics.
[25] S. Toxvaerd,et al. Communication: Shifted forces in molecular dynamics. , 2010, The Journal of chemical physics.
[26] Peng Wang,et al. Implementing molecular dynamics on hybrid high performance computers - short range forces , 2011, Comput. Phys. Commun..
[27] D. C. Rapaport,et al. Enhanced molecular dynamics performance with a programmable graphics processor , 2009, Comput. Phys. Commun..
[28] Duncan Poole,et al. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born , 2012, Journal of chemical theory and computation.
[29] Ron Elber,et al. MOIL-opt: Energy-Conserving Molecular Dynamics on a GPU/CPU system. , 2011, Journal of chemical theory and computation.
[30] A. Arnold,et al. Harvesting graphics power for MD simulations , 2007, 0709.3225.
[31] Sharon C. Glotzer,et al. Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units , 2011, Comput. Phys. Commun..
[32] Vijay S. Pande,et al. Efficient nonbonded interactions for molecular dynamics on a graphics processing unit , 2010, J. Comput. Chem..
[33] Jens H. Krüger,et al. A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.
[34] I. R. Mcdonald,et al. Statistical mechanics of dense ionized matter. IV. Density and charge fluctuations in a simple molten salt , 1975 .
[35] Jinghai Li,et al. Molecular dynamics simulation of macromolecules using graphics processing unit , 2010, 1001.3764.
[36] O. J. Heilmann,et al. NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface. , 2010, The Journal of chemical physics.
[37] S. Phillpot,et al. Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .
[38] Duncan Poole,et al. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.
[39] Steve Plimpton,et al. Fast parallel algorithms for short-range molecular dynamics , 1993 .
[40] M. Klein,et al. Constant pressure molecular dynamics algorithms , 1994 .
[41] Srikanth Sastry,et al. Growing length and time scales in glass-forming liquids , 2008, Proceedings of the National Academy of Sciences.
[42] Felix Höfling,et al. Highly accelerated simulations of glassy dynamics using GPUs: Caveats on limited floating-point precision , 2009, Comput. Phys. Commun..
[43] Y. Shibuta,et al. Accelerating Molecular Dynamics Simulation Performed on GPU , 2012 .
[44] Ross C. Walker,et al. An overview of the Amber biomolecular simulation package , 2013 .
[45] Tetsu Narumi,et al. Accelerating molecular dynamics simulation using graphics processing unit , 2010 .
[46] Klaus Schulten,et al. GPU-accelerated molecular modeling coming of age. , 2010, Journal of molecular graphics & modelling.
[47] Edward Teller,et al. Interaction of the van der Waals Type Between Three Atoms , 1943 .
[48] Yuji Sugita,et al. Graphics Processing Unit Acceleration and Parallelization of GENESIS for Large-Scale Molecular Dynamics Simulations. , 2016, Journal of chemical theory and computation.
[49] Carsten Kutzner,et al. Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS , 2015, EASC.
[50] William J. Dally,et al. The GPU Computing Era , 2010, IEEE Micro.
[51] Jie Cheng,et al. Programming Massively Parallel Processors. A Hands-on Approach , 2010, Scalable Comput. Pract. Exp..
[52] Peter H. Poole,et al. “Swarm relaxation”: Equilibrating a large ensemble of computer simulations⋆ , 2017, The European physical journal. E, Soft matter.
[53] Vijay S. Pande,et al. Accelerating molecular dynamic simulation on graphics processing units , 2009, J. Comput. Chem..
[54] T. Darden,et al. A smooth particle mesh Ewald method , 1995 .
[55] Massimo Bernaschi,et al. Colloquium: Large scale simulations on GPU clusters , 2015 .
[56] I. Z. Reguly,et al. A comparison between parallelization approaches in molecular dynamics simulations on GPUs , 2014, J. Comput. Chem..