Active pose SLAM with RRT*

We propose a novel method for robotic exploration that evaluates paths that minimize both the joint path and map entropy per meter traveled. The method uses Pose SLAM to update the path estimate, and grows an RRT* tree to generate the set of candidate paths. This action selection mechanism contrasts with previous approaches in which the action set was built heuristically from a sparse set of candidate actions. The technique favorably compares against the classical frontier-based exploration and other Active Pose SLAM methods in simulations in a common publicly available dataset.

[1]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[2]  Frank Dellaert,et al.  Concurrent filtering and smoothing: A parallel architecture for real-time navigation and full smoothing , 2014, Int. J. Robotics Res..

[3]  Jaime Valls Miró,et al.  Active Pose SLAM , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[5]  Sebastian Thrun,et al.  FastSLAM: A Scalable Method for the Simultaneous Localization and Mapping Problem in Robotics , 2007 .

[6]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[7]  Giuseppe Oriolo,et al.  Frontier-Based Probabilistic Strategies for Sensor-Based Exploration , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[8]  Marilena Vendittelli,et al.  The SRT method: randomized strategies for exploration , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[9]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[10]  Juan Andrade-Cetto,et al.  Dense entropy decrease estimation for mobile robot exploration , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[11]  Brian Yamauchi,et al.  A frontier-based approach for autonomous exploration , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[12]  Teresa A. Vidal-Calleja,et al.  Action Selection for Single-Camera SLAM , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Paul Newman,et al.  Choosing where to go: Complete 3D exploration with stereo , 2011, 2011 IEEE International Conference on Robotics and Automation.

[14]  Kamal K. Gupta,et al.  Configuration space based efficient view planning and exploration with occupancy grids , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[16]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[17]  Wolfram Burgard,et al.  Information Gain-based Exploration Using Rao-Blackwellized Particle Filters , 2005, Robotics: Science and Systems.

[18]  Hanumant Singh,et al.  Exactly Sparse Delayed-State Filters for View-Based SLAM , 2006, IEEE Transactions on Robotics.

[19]  John J. Leonard,et al.  Adaptive Mobile Robot Navigation and Mapping , 1999, Int. J. Robotics Res..

[20]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[21]  Alberto Sanfeliu,et al.  Action evaluation for mobile robot global localization in cooperative environments , 2008, Robotics Auton. Syst..

[22]  Alexei Makarenko,et al.  Information based adaptive robotic exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Juan Andrade-Cetto,et al.  Potential information fields for mobile robot exploration , 2015, Robotics Auton. Syst..

[24]  Juan Andrade-Cetto,et al.  Information-Based Compact Pose SLAM , 2010, IEEE Transactions on Robotics.