Clique Cover and Graph Separation: New Incompressibility Results

The field of kernelization studies polynomial-time preprocessing routines for hard problems in the framework of parameterized complexity. In this article, we show that, unless the polynomial hierarchy collapses to its third level, the following parameterized problems do not admit a polynomial-time preprocessing algorithm that reduces the size of an instance to polynomial in the parameter: ---Edge Clique Cover, parameterized by the number of cliques, ---Directed Edge/Vertex Multiway Cut, parameterized by the size of the cutset, even in the case of two terminals, ---Edge/Vertex Multicut, parameterized by the size of the cutset, and ---k-Way Cut, parameterized by the size of the cutset.

[1]  P. Erdös,et al.  The Representation of a Graph by Set Intersections , 1966, Canadian Journal of Mathematics.

[2]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[3]  J. Orlin Contentment in graph theory: Covering graphs with cliques , 1977 .

[4]  Chak-Kuen Wong,et al.  Covering edges by cliques with regard to keyword conflicts and intersection graphs , 1978, CACM.

[5]  M. Garey Johnson: computers and intractability: a guide to the theory of np- completeness (freeman , 1979 .

[6]  David P. Dailey Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete , 1980, Discret. Math..

[7]  Chee-Keng Yap,et al.  Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..

[8]  H. Tverberg On Brooks' theorem and some related results. , 1983 .

[9]  Fred S. Roberts,et al.  Applications of edge coverings by cliques , 1985, Discret. Appl. Math..

[10]  Dorit S. Hochbaum,et al.  Polynomial algorithm for the k-cut problem , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[11]  Wen-Lian Hsu,et al.  Linear Time Algorithms on Circular-Arc Graphs , 1991, Inf. Process. Lett..

[12]  Noga Alon,et al.  Can visibility graphs Be represented compactly? , 1993, SCG '93.

[13]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[14]  Mihalis Yannakakis,et al.  Approximate max-flow min-(multi)cut theorems and their applications , 1993, SIAM J. Comput..

[15]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[16]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[17]  Dorit S. Hochbaum,et al.  A Polynomial Algorithm for the k-cut Problem for Fixed k , 1994, Math. Oper. Res..

[18]  Mihalis Yannakakis,et al.  Approximate Max-Flow Min-(Multi)Cut Theorems and Their Applications , 1996, SIAM J. Comput..

[19]  David R. Karger,et al.  A new approach to the minimum cut problem , 1996, JACM.

[20]  Michel Burlet,et al.  A new and improved algorithm for the 3-cut problem , 1997, Oper. Res. Lett..

[21]  Yuval Rabani,et al.  An improved approximation algorithm for multiway cut , 1998, STOC '98.

[22]  J. Gross,et al.  Graph Theory and Its Applications , 1998 .

[23]  Giorgio Gambosi,et al.  The Complexity of Optimization Problems , 1999 .

[24]  Mikkel Thorup,et al.  Rounding algorithms for a geometric embedding of minimum multiway cut , 1999, STOC '99.

[25]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[26]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[27]  Sharad Malik,et al.  Handling irregular ILP within conventional VLIW schedulers using artificial resource constraints , 2000, CASES '00.

[28]  RabaniYuval,et al.  An Improved Approximation Algorithm for MULTIWAY CUT , 2000 .

[29]  Joseph Naor,et al.  A 2-Approximation Algorithm for the Directed Multiway Cut Problem , 2001, SIAM J. Comput..

[30]  Haiko Müller,et al.  On the Tree-Degree of Graphs , 2001, WG.

[31]  Siam Staff A 2-Approximation Algorithm for the Directed Multiway Cut Problem , 2002 .

[32]  Michael R. Fellows,et al.  Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related Problems , 2003, CATS.

[33]  Hans-Peter Piepho,et al.  An Algorithm for a Letter-Based Representation of All-Pairwise Comparisons , 2004 .

[34]  Mihalis Yannakakis,et al.  Multiway cuts in node weighted graphs , 2004, J. Algorithms.

[35]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[36]  Jean-Loup Guillaume,et al.  Bipartite structure of all complex networks , 2004, Inf. Process. Lett..

[37]  Jin-Yi Cai,et al.  Competing provers yield improved Karp-Lipton collapse results , 2005, Inf. Comput..

[38]  Moni Naor,et al.  On the Compressibility of NP Instances and Cryptographic Applications , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[39]  Dániel Marx,et al.  Parameterized graph separation problems , 2004, Theor. Comput. Sci..

[40]  Anusch Taraz,et al.  Efficiently covering complex networks with cliques of similar vertices , 2006, Theor. Comput. Sci..

[41]  Jianer Chen,et al.  An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem , 2007, Algorithmica.

[42]  Rolf Niedermeier,et al.  Algorithms for compact letter displays: Comparison and evaluation , 2007, Comput. Stat. Data Anal..

[43]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[44]  YOKO KAMIDOI,et al.  A Deterministic Algorithm for Finding All Minimum k-Way Cuts , 2006, SIAM J. Comput..

[45]  Jianer Chen,et al.  An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem , 2007, WADS.

[46]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[47]  H. Bodlaender,et al.  Analysis of Data Reduction: Transformations give evidence for non-existence of polynomial kernels , 2008 .

[48]  Barry O'Sullivan,et al.  A fixed-parameter algorithm for the directed feedback vertex set problem , 2008, JACM.

[49]  Mikkel Thorup,et al.  Minimum k-way cuts via deterministic greedy tree packing , 2008, STOC.

[50]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[51]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[52]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[53]  Stefan Kratsch,et al.  Two edge modification problems without polynomial kernels , 2009, Discret. Optim..

[54]  Mingyu Xiao,et al.  Simple and Improved Parameterized Algorithms for Multiterminal Cuts , 2009, Theory of Computing Systems.

[55]  Jianer Chen,et al.  Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers , 2009, IWPEC.

[56]  Hans L. Bodlaender,et al.  Kernelization: New Upper and Lower Bound Techniques , 2009, IWPEC.

[57]  Barry O'Sullivan,et al.  Almost 2-SAT is Fixed-Parameter Tractable , 2008, J. Comput. Syst. Sci..

[58]  Rolf Niedermeier,et al.  Data reduction and exact algorithms for clique cover , 2009, JEAL.

[59]  Moni Naor,et al.  On the Compressibility of NP Instances and Cryptographic Applications , 2010, SIAM J. Comput..

[60]  Igor Razgon Computing multiway cut within the given excess over the largest minimum isolating cut , 2010, ArXiv.

[61]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[62]  Faisal N. Abu-Khzam,et al.  A kernelization algorithm for d-Hitting Set , 2010, J. Comput. Syst. Sci..

[63]  Marcin Pilipczuk,et al.  Kernelization Hardness of Connectivity Problems in , 2010, WG 2010.

[64]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.

[65]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[66]  Michal Pilipczuk,et al.  Kernelization Hardness of Connectivity Problems in d-Degenerate Graphs , 2010, WG.

[67]  Michal Pilipczuk,et al.  An Improved FPT Algorithm and a Quadratic Kernel for Pathwidth One Vertex Deletion , 2012, Algorithmica.

[68]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[69]  Dániel Marx,et al.  Fixed-parameter tractability of multicut parameterized by the size of the cutset , 2010, STOC '11.

[70]  Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011 , 2011, STOC.

[71]  Nicolas Bousquet,et al.  Multicut is FPT , 2010, STOC '11.

[72]  Stefan Kratsch,et al.  Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.

[73]  Stefan Kratsch,et al.  Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization , 2011, SIAM J. Discret. Math..

[74]  Sylvain Guillemot,et al.  FPT algorithms for path-transversal and cycle-transversal problems , 2011, Discret. Optim..

[75]  Xi Wu,et al.  Weak compositions and their applications to polynomial lower bounds for kernelization , 2012, SODA.

[76]  Michal Pilipczuk,et al.  On Multiway Cut Parameterized above Lower Bounds , 2011, IPEC.

[77]  Polish Ministry Subset feedback vertex set is fixed-parameter tractable , 2011 .

[78]  Igor Razgon Large Isolating Cuts Shrink the Multiway Cut , 2011, ArXiv.

[79]  Ken-ichi Kawarabayashi,et al.  The Minimum k-way Cut of Bounded Size is Fixed-Parameter Tractable , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[80]  Michal Pilipczuk,et al.  Clique Cover and Graph Separation: New Incompressibility Results , 2012, ICALP.

[81]  Andrew Drucker,et al.  New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[82]  Saket Saurabh,et al.  Kernelization - Preprocessing with a Guarantee , 2012, The Multivariate Algorithmic Revolution and Beyond.

[83]  Dániel Marx,et al.  Kernelization of packing problems , 2012, SODA.

[84]  Mohammad Taghi Hajiaghayi,et al.  Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset , 2011, SODA.

[85]  Henning Fernau,et al.  Kernel(s) for problems with no kernel: On out-trees with many leaves , 2008, TALG.

[86]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[87]  Michal Pilipczuk,et al.  Parameterized Complexity of Eulerian Deletion Problems , 2012, Algorithmica.

[88]  Michal Pilipczuk,et al.  Fixed-Parameter Tractability of Multicut in Directed Acyclic Graphs , 2012, ICALP.

[89]  Marek Cygan,et al.  Subset Feedback Vertex Set Is Fixed-Parameter Tractable , 2010, SIAM J. Discret. Math..

[90]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[91]  Stefan Kratsch,et al.  Co-Nondeterminism in Compositions: A Kernelization Lower Bound for a Ramsey-Type Problem , 2011, TALG.

[92]  Stefan Kratsch,et al.  Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal , 2011, TALG.

[93]  Michal Pilipczuk,et al.  Fixed-Parameter Tractability of Multicut in Directed Acyclic Graphs , 2015, SIAM J. Discret. Math..

[94]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .