Image Registration Using Wavelet-Based Motion Model

An image registration algorithm is developed to estimate dense motion vectors between two images using the coarse-to-fine wavelet-based motion model. This motion model is described by a linear combination of hierarchical basis functions proposed by Cai and Wang (SIAM Numer. Anal., 33(3):937–970, 1996). The coarser-scale basis function has larger support while the finer-scale basis function has smaller support. With these variable supports in full resolution, the basis functions serve as large-to-small windows so that the global and local information can be incorporated concurrently for image matching, especially for recovering motion vectors containing large displacements. To evaluate the accuracy of the wavelet-based method, two sets of test images were experimented using both the wavelet-based method and a leading pyramid spline-based method by Szeliski et al. (International Journal of Computer Vision, 22(3):199–218, 1996). One set of test images, taken from Barron et al. (International Journal of Computer Vision, 12:43–77, 1994), contains small displacements. The other set exhibits low texture or spatial aliasing after image blurring and contains large displacements. The experimental results showed that our wavelet-based method produced better motion estimates with error distributions having a smaller mean and smaller standard deviation.

[1]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[2]  Hans-Hellmut Nagel,et al.  Optical Flow Estimation: Advances and Comparisons , 1994, ECCV.

[3]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[4]  Ajit Singh,et al.  An estimation-theoretic framework for image-flow computation , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[5]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[7]  L. Quam Hierarchical warp stereo , 1987 .

[8]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[9]  Steven A. Shafer,et al.  Moment and Hypergeometric Filters for High Precision Computation of Focus, Stereo and Optical Flow , 1994, International Journal of Computer Vision.

[10]  A. Habibi,et al.  Introduction to wavelets , 1995, Proceedings of MILCOM '95.

[11]  Kenichi Kanatani,et al.  Geometric computation for machine vision , 1993 .

[12]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[13]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[14]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[15]  Jitendra Malik,et al.  Tracking people with twists and exponential maps , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[16]  Michael Spann,et al.  Robust multiresolution computation of optical flow , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[17]  Harry Shum,et al.  Motion estimation with quadtree splines , 1995, Proceedings of IEEE International Conference on Computer Vision.

[18]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[19]  Wilfried Brauer,et al.  Intensity- and Gradient-Based Stereo Matching Using Hierarchical Gaussian Basis Functions , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 2005, International Journal of Computer Vision.

[21]  K. Hanna Direct multi-resolution estimation of ego-motion and structure from motion , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[22]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[23]  David J. Fleet,et al.  Parameter - ized models of image motion , 1997, CVPR 1997.

[24]  David J. Fleet,et al.  Motion feature detection using steerable flow fields , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[25]  Michael Spann,et al.  Robust Optical Flow Computation Based on Least-Median-of-Squares Regression , 1999, International Journal of Computer Vision.

[26]  Takeo Kanade,et al.  Optical flow estimation using wavelet motion model , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[27]  Hans-Hellmut Nagel,et al.  On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..

[28]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[29]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  W. Clem Karl,et al.  Efficient multiscale regularization with applications to the computation of optical flow , 1994, IEEE Trans. Image Process..

[31]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[32]  Allen M. Waxman,et al.  Contour Evolution, Neighborhood Deformation, and Global Image Flow: Planar Surfaces in Motion , 1985 .

[33]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[34]  Alberto Del Bimbo,et al.  A Robust Algorithm for Optical Flow Estimation , 1995, Comput. Vis. Image Underst..

[35]  Jianzhong Wang,et al.  Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs , 1996 .

[36]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[37]  H. Yserentant Erratum. On the Multi-Level Splitting of Finite Element Spaces.(Numer. Math. 49, 379-412 (1986)). , 1986 .

[38]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[39]  Berthold K. P. Horn,et al.  "Determining optical flow": A Retrospective , 1993, Artif. Intell..

[40]  Wilfried Enkelmann,et al.  Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences , 1988, Comput. Vis. Graph. Image Process..

[41]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[42]  Patrick Pérez,et al.  Dense estimation and object-based segmentation of the optical flow with robust techniques , 1998, IEEE Trans. Image Process..

[43]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[44]  Michael J. Black,et al.  Mixture models for optical flow computation , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[46]  Richard Szeliski,et al.  Motion Estimation with Quadtree Splines , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  David Suter,et al.  Optic flow calculation using robust statistics , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.