Nonlinear blind source separation using kernel feature spaces
暂无分享,去创建一个
Terrence J. Sejnowski | Lee | Tzyy-Ping Jung | Stefan Harmeling | K-R Müller | S. Makeig | Kawanabe M Blankertz B Ziehe A | T. Sejnowski | K. Müller | T. Jung | S. Makeig | S. Harmeling | Lee
[1] Christian Jutten,et al. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..
[2] J. Cardoso,et al. Blind beamforming for non-gaussian signals , 1993 .
[3] Schuster,et al. Separation of a mixture of independent signals using time delayed correlations. , 1994, Physical review letters.
[4] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[5] Terrence J. Sejnowski,et al. An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.
[6] Gustavo Deco,et al. Linear redundancy reduction learning , 1995, Neural Networks.
[7] Andrzej Cichocki,et al. A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.
[8] A. Hyvärinen,et al. Nonlinear Blind Source Separation by Self-Organizing Maps , 1996 .
[9] Eric Moulines,et al. A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..
[10] Juha Karhunen,et al. A Maximum Likelihood Approach to Nonlinear Blind Source Separation , 1997, ICANN.
[11] D. Chakrabarti,et al. A fast fixed - point algorithm for independent component analysis , 1997 .
[12] Juan K. Lin,et al. Faithful Representation of Separable Distributions , 1997, Neural Computation.
[13] Andreas Ziehe,et al. TDSEP { an e(cid:14)cient algorithm for blind separation using time structure , 1998 .
[14] Andrzej Cichocki,et al. Information-theoretic approach to blind separation of sources in non-linear mixture , 1998, Signal Process..
[15] Aapo Hyvärinen,et al. Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.
[16] Ali Mansour,et al. Blind Separation of Sources , 1999 .
[17] Christian Jutten,et al. Source separation in post-nonlinear mixtures , 1999, IEEE Trans. Signal Process..
[18] Pei Ling Lai,et al. Ica Using Kernel Canonical Correlation Analysis , 2000 .
[19] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[20] Juha Karhunen,et al. Nonlinear Independent Component Analysis Using Ensemble Learning: Experiments and Discussion , 2000 .
[21] Gunnar Rätsch,et al. An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.
[22] T. Sejnowski,et al. Separation of post-nonlinear mixtures using ACE and temporal decorrelation , 2001 .
[23] Dustin Boswell,et al. Introduction to Support Vector Machines , 2002 .
[24] Constance de Koning,et al. Editors , 2003, Annals of Emergency Medicine.