Multitemporal repeat pass SAR interferometry of boreal forests

Multitemporal interferometric European Remote Sensing 1 and 2 satellite tandem pairs from a forest test site in Finland are examined in order to determine the stem volume retrieval accuracy. A form of multitemporal filtering is introduced to investigate what forest stands show a multitemporal consistency in coherence. It is found that a large stand size is a major factor to obtain accurate retrievals. The effect of heterogeneity of forest stands is also discussed. Based on the stands showing highest multitemporal consistency different models for scattering and coherence are compared. The interferometric water cloud model is chosen for stem volume retrieval. The variation of the model parameters with meteorological parameters is investigated and the results illustrate that the best imaging conditions are obtained for subzero temperatures and windy conditions. It is shown that for the 20 stands showing highest multitemporal consistency the stem volume can be retrieved with a relative error of 21%, deteriorating when the number of testing stands is increased, e.g., for 80 stands the error is 48%. For 37 large forest stands representing 48% of the investigated area the relative stem volume error is 26%. With experience from another site in Sweden we may conclude that the error level for a multitemporal interferometric synthetic aperture radar evaluation of stem volume for large forest stands (>2 ha) in a well managed and homogeneous boreal forest may be expected to be in the 15% to 25% range, deteriorating for small and heterogeneous stands and for images acquired under nonwinter conditions.

[1]  Shaun Quegan,et al.  Filtering of multichannel SAR images , 2001, IEEE Trans. Geosci. Remote. Sens..

[2]  T. Strozzi,et al.  SAR interferometric and differential interferometric processing chain , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[3]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[4]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[5]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[6]  Urs Wegmüller,et al.  ERS INSAR data for remote sensing hilly forested areas , 2000 .

[7]  Kamal Sarabandi,et al.  Simulation of interferometric SAR response for characterizing the scattering phase center statistics of forest canopies , 2000, IEEE Trans. Geosci. Remote. Sens..

[8]  Juha Hyyppä,et al.  Effects of stand size on the accuracy of remote sensing-based forest inventory , 2001, IEEE Trans. Geosci. Remote. Sens..

[9]  Juha Hyyppä,et al.  The seasonal behavior of interferometric coherence in boreal forest , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  Jan Askne,et al.  Forest Insar Decorrelation and Classification Properties , 1997 .

[11]  Thuy Le Toan,et al.  Deriving forest canopy parameters for backscatter models using the AMAP architectural plant model , 2001, IEEE Trans. Geosci. Remote. Sens..

[12]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[13]  Thuy Le Toan,et al.  Multitemporal ERS SAR analysis applied to forest mapping , 2000, IEEE Trans. Geosci. Remote. Sens..

[14]  Juha Hyyppä,et al.  Backscattering properties of boreal forests at the C- and X-bands , 1994, IEEE Trans. Geosci. Remote. Sens..

[15]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[16]  N. Floury,et al.  Interferometry for forest studies , 1997 .

[17]  Lars M. H. Ulander,et al.  C-band repeat-pass interferometric SAR observations of the forest , 1997, IEEE Trans. Geosci. Remote. Sens..

[18]  Jan Askne,et al.  Coherence Characteristics of Radar Signals from Rough Soil , 2001 .

[19]  Didier Massonnet,et al.  Capabilities and limitations of the interferometric cartwheel , 2001, IEEE Trans. Geosci. Remote. Sens..

[20]  Johan E. S. Fransson,et al.  Stem volume estimation in boreal forests using ERS-1/2 coherence and SPOT XS optical data , 2001 .

[21]  A. Lopes,et al.  Temporal Variations of Interferometric Coherence over a Deciduous Forest , 2000 .

[22]  Martti Hallikainen,et al.  Multitemporal behavior of L- and C-band SAR observations of boreal forests , 1999, IEEE Trans. Geosci. Remote. Sens..

[23]  Gary Smith ERS InSAR coherence for remote sensing of boreal forests , 1998 .

[24]  Christiane Schmullius,et al.  Large-scale mapping of boreal forest in Siberia , 2003 .

[25]  J. Vietmeier,et al.  SIBERIA - Sar Imaging for Boreal Ecology and Radar Interferometry Applications: First ERS Tandem Results from the IGBP Boreal Forest Transect , 1998 .

[26]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[27]  Martti Hallikainen,et al.  Feasibility of multi-temporal interferometric SAR data for stand-level estimation of boreal forest stem volume , 2003 .

[28]  D. H. Hoekman,et al.  Radar modelling of coniferous forest using a tree growth model , 2000 .

[29]  Maurizio Santoro,et al.  Stem volume retrieval in boreal forests from ERS-1/2 interferometry , 2002 .

[30]  Fabio Rocca,et al.  The wavenumber shift in SAR interferometry , 1994, IEEE Trans. Geosci. Remote. Sens..

[31]  Lars M. H. Ulander,et al.  Forestry parameter retrieval from texture in CARABAS VHF-band SAR images , 2001, IEEE Trans. Geosci. Remote. Sens..