Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data.

[1]  C. Ottlé,et al.  Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations , 2015, PloS one.

[2]  C. Woodcock,et al.  Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images , 2015 .

[3]  S. Acker,et al.  Postfire influences of snag attrition on albedo and radiative forcing , 2014 .

[4]  E. N. Stavros,et al.  Assessing fire severity using imaging spectroscopy data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and comparison with multispectral capabilities , 2014 .

[5]  Christophe Kinnard,et al.  Albedo over rough snow and ice surfaces , 2014 .

[6]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[7]  Benjamin Smith,et al.  Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model , 2013 .

[8]  Donghui Xie,et al.  Daily MODIS 500 m reflectance anisotropy direct broadcast (DB) products for monitoring vegetation phenology dynamics , 2013 .

[9]  Zhuosen Wang,et al.  Use of In Situ and Airborne Multiangle Data to Assess MODIS- and Landsat-Based Estimates of Directional Reflectance and Albedo , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Suming Jin,et al.  Reconstructing satellite images to quantify spatially explicit land surface change caused by fires and succession: A demonstration in the Yukon River Basin of interior Alaska , 2013 .

[11]  Feng Gao,et al.  Landsat Ecosystem Disturbance Adaptive Processing System LEDAPS algorithm description , 2013 .

[12]  Y. Arnaud,et al.  Linking glacier annual mass balance and glacier albedo retrieved from MODIS data , 2012 .

[13]  Dong Liu,et al.  Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds , 2012 .

[14]  J. Randerson,et al.  Post‐fire changes in net shortwave radiation along a latitudinal gradient in boreal North America , 2012 .

[15]  Qingsheng Liu,et al.  Magnetic petrology of high Fe-Ti eclogites from the CCSD main hole: Implications for subduction-zone magnetism , 2012 .

[16]  Ruben Van De Kerchove,et al.  Assessment of post-fire changes in land surface temperature and surface albedo, and their relation with fire–burn severity using multitemporal MODIS imagery , 2012 .

[17]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[18]  C. Woodcock,et al.  Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra , 2012 .

[19]  A. Kääb,et al.  Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal , 2012 .

[20]  J. Randerson,et al.  The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests , 2011 .

[21]  W. Donahue,et al.  Experimental drying intensifies burning and carbon losses in a northern peatland. , 2011, Nature communications.

[22]  F. Gao,et al.  An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF , 2011 .

[23]  Michael D. King,et al.  Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements , 2011 .

[24]  Adrian V. Rocha,et al.  Postfire energy exchange in arctic tundra: the importance and climatic implications of burn severity , 2011 .

[25]  J. W. Wagtendonk,et al.  Fire Frequency, Area Burned, and Severity: A Quantitative Approach to Defining a Normal Fire Year , 2011 .

[26]  J. Randerson,et al.  The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo , 2011, Global Change Biology.

[27]  Donald K. Perovich,et al.  Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008 , 2011 .

[28]  A. Kääb,et al.  Characterization of glacier debris cover via in situ and optical remote sensing methods: a case study in the Khumbu Himalaya, Nepal , 2011 .

[29]  Eric S. Kasischke,et al.  Persistent Effects of Fire Severity on Early Successional Forests in Interior Alaska , 2011 .

[30]  S. Veraverbeke,et al.  A time-integrated MODIS burn severity assessment using the multi-temporal differenced normalized burn ratio (dNBRMT) , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[31]  Sander Veraverbeke,et al.  The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: the case of the large 2007 Peloponnese wildfires in Greece. , 2010 .

[32]  Feng Gao,et al.  Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes , 2010 .

[33]  F. Chapin,et al.  Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest , 2010 .

[34]  David J. Selkowitz,et al.  A spatially stratified, multi-stage cluster sampling design for assessing accuracy of the Alaska (USA) National Land Cover Database (NLCD) , 2010 .

[35]  K. Davis,et al.  The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes , 2009 .

[36]  Mike D. Flannigan,et al.  Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century , 2009 .

[37]  Christopher I. Roos,et al.  Fire in the Earth System , 2009, Science.

[38]  R. Hall,et al.  Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results , 2008 .

[39]  S. Gower,et al.  Decomposition and Fragmentation of Coarse Woody Debris: Re-visiting a Boreal Black Spruce Chronosequence , 2008, Ecosystems.

[40]  J. Randerson,et al.  Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations , 2008 .

[41]  Thomas R. Anderson,et al.  A dynamic model of oceanic sulfur (DMOS) applied to the Sargasso Sea: Simulating the dimethylsulfide (DMS) summer paradox , 2008 .

[42]  J. Randerson,et al.  Recovery of Aboveground Plant Biomass and Productivity After Fire in Mesic and Dry Black Spruce Forests of Interior Alaska , 2008, Ecosystems.

[43]  Elizabeth Bagshaw,et al.  Biogeochemical Evolution of Cryoconite Holes on Canada Glacier, Taylor Valley, Antarctica , 2007 .

[44]  B. Quayle,et al.  A Project for Monitoring Trends in Burn Severity , 2007 .

[45]  Scott D. Peckham,et al.  Fire as the dominant driver of central Canadian boreal forest carbon balance , 2007, Nature.

[46]  Scott J. Goetz,et al.  Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting northern Eurasia and North America , 2007 .

[47]  Jonathan M. Graham,et al.  Analysis of Alaskan burn severity patterns using remotely sensed data , 2007 .

[48]  A. Shvidenko,et al.  The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis , 2006 .

[49]  J. Randerson,et al.  The Impact of Boreal Forest Fire on Climate Warming , 2006, Science.

[50]  Alan G. Barr,et al.  The effect of post-fire stand age on the boreal forest energy balance , 2006 .

[51]  K. Caldeira,et al.  Combined climate and carbon-cycle effects of large-scale deforestation , 2006, Proceedings of the National Academy of Sciences.

[52]  John E. Walsh,et al.  Integrated regional changes in arctic climate feedbacks: Implications for the global climate system , 2006 .

[53]  T. Swetnam,et al.  Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity , 2006, Science.

[54]  Andreas Roesch,et al.  Assessment of Snow Cover and Surface Albedo in the ECHAM5 General Circulation Model , 2006 .

[55]  E. Kasischke,et al.  Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska , 2006 .

[56]  F. Stuart Chapin,et al.  Effects of Soil Burn Severity on Post-Fire Tree Recruitment in Boreal Forest , 2006, Ecosystems.

[57]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[58]  M. Flannigan,et al.  Future Area Burned in Canada , 2005 .

[59]  J. Randerson,et al.  Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective , 2005 .

[60]  D. Verbyla,et al.  Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM , 2005 .

[61]  David L. Verbyla,et al.  Landscape-level interactions of prefire vegetation, burn severity, and postfire vegetation over a 16-year period in interior Alaska , 2005 .

[62]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[63]  F. Chapin,et al.  Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions , 2004 .

[64]  A. Weaver,et al.  Detecting the effect of climate change on Canadian forest fires , 2004 .

[65]  Stephen Sitch,et al.  Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years , 2004 .

[66]  J. Oerlemans,et al.  Temporal and spatial variation of the surface albedo of Morteratschgletscher, Switzerland, as derived from 12 Landsat images , 2003, Journal of Glaciology.

[67]  N. DiGirolamo,et al.  MODIS snow-cover products , 2002 .

[68]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[69]  F. S. Chapin,et al.  Fire effects on surface‐atmosphere energy exchange in Alaskan black spruce ecosystems: Implications for feedbacks to regional climate , 2002 .

[70]  S. Liang Narrowband to broadband conversions of land surface albedo I Algorithms , 2001 .

[71]  C. Long,et al.  SURFRAD—A National Surface Radiation Budget Network for Atmospheric Research , 2000 .

[72]  Teruo Aoki,et al.  Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface , 2000 .

[73]  Wolfgang Lucht,et al.  Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling , 2000 .

[74]  A. Taylor,et al.  Fire history and landscape dynamics in a late-successional reserve, Klamath Mountains, California, USA , 1998 .

[75]  J. Vogelmann,et al.  Regional Land Cover Characterization Using Landsat Thematic Mapper Data and Ancillary Data Sources , 1998 .

[76]  A. Goetz,et al.  Cirrus cloud detection from airborne imaging spectrometer data using the 1 , 1993 .

[77]  T. T. Veblen,et al.  Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrubland , 1992 .

[78]  V. Caselles,et al.  Mapping burns and natural reforestation using thematic Mapper data , 1991 .

[79]  T. Veblen Tree Regeneration Responses to Gaps Along a Transandean Gradient , 1989 .

[80]  Jerry F. Franklin,et al.  Gap Characteristics and Vegetation Response in Coniferous Forests of the Pacific Northwest , 1989 .

[81]  R. A. Norum,et al.  Survival and growth of planted black spruce, alder, aspen and willow after fire on black spruce/feather moss sites in interior Alaska , 1987 .

[82]  R. A. Norum,et al.  Artificial regeneration of trees and tall shrubs in experimentally burned upland black spruce/feather moss stands in Alaska , 1983 .

[83]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols , 1980 .

[84]  L. Viereck Wildfire in the Taiga of Alaska , 1973, Quaternary Research.

[85]  张静,et al.  Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening , 2015 .

[86]  F. Gao,et al.  An Approach for the Long-Term 30-m Land Surface Snow-Free Albedo Retrieval from Historic Landsat Surface Reflectance and MODIS-based A Priori Anisotropy Knowledge , 2014 .

[87]  C. Woodcock,et al.  Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods , 2014 .

[88]  F. Chapin,et al.  Land Cover Disturbances and Feedbacks to the Climate System in Canada and Alaska , 2012 .

[89]  Jan Verbesselt,et al.  Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index , 2011 .

[90]  Jan Verbesselt,et al.  A pixel based regeneration index using time series similarity and spatial context , 2010 .

[91]  J. Randerson,et al.  Ecosystems responses to recent climate change and fire disturbance at northeren latitudes: Observations and modeling results contrasting Eurasia and North America , 2007 .

[92]  J. Wickham,et al.  Completion of the 2001 National Land Cover Database for the conterminous United States , 2007 .

[93]  M. J. Foote,et al.  Classification, description, and dynamics of plant communities after fire in the taiga of interior Alaska. , 1983 .