Parallel and Scalable Heat Methods for Geodesic Distance Computation

In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method [1] can be reformulated as optimization of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50 percent. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128 GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers.

[1]  Timothy J. Baker,et al.  Analysis of triangle quality measures , 2003, Math. Comput..

[2]  David Eppstein,et al.  Dynamic generators of topologically embedded graphs , 2002, SODA '03.

[3]  Laurent D. Cohen,et al.  Geodesic Methods in Computer Vision and Graphics , 2010, Found. Trends Comput. Graph. Vis..

[4]  Keenan Crane,et al.  Navigating intrinsic triangulations , 2019, ACM Trans. Graph..

[5]  Alexander G. Belyaev,et al.  On Variational and PDE‐Based Distance Function Approximations , 2015, Comput. Graph. Forum.

[6]  Hans-Peter Seidel,et al.  Directed Edges - A Scalable Representation for Triangle Meshes , 1998, J. Graphics, GPU, & Game Tools.

[7]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[8]  Alexander M. Bronstein,et al.  Three-Dimensional Face Recognition , 2005, International Journal of Computer Vision.

[9]  Keenan Crane,et al.  Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.

[10]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[12]  Keenan Crane,et al.  Trivial Connections on Discrete Surfaces , 2010, Comput. Graph. Forum.

[13]  S. Varadhan On the behavior of the fundamental solution of the heat equation with variable coefficients , 2010 .

[14]  Shi-Qing Xin,et al.  Improving Chen and Han's algorithm on the discrete geodesic problem , 2009, TOGS.

[15]  Jie Li,et al.  ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints , 2017, IEEE Trans. Vis. Comput. Graph..

[16]  Ying He,et al.  Lightweight preprocessing and fast query of geodesic distance via proximity graph , 2018, Comput. Aided Des..

[17]  Keenan Crane,et al.  The heat method for distance computation , 2017, Commun. ACM.

[18]  Laurent Najman,et al.  Geodesic Saliency of Watershed Contours and Hierarchical Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Gordon Wetzstein,et al.  ProxImaL , 2016, ACM Trans. Graph..

[20]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[21]  Keenan Crane,et al.  The Vector Heat Method , 2018, ACM Trans. Graph..

[22]  Jennifer A. Scott,et al.  Design of a Multicore Sparse Cholesky Factorization Using DAGs , 2010, SIAM J. Sci. Comput..

[23]  Anuj Srivastava,et al.  2D Affine and Projective Shape Analysis , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Jian-Jun Zhang,et al.  Fast and exact discrete geodesic computation based on triangle-oriented wavefront propagation , 2016, ACM Trans. Graph..

[25]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[26]  Alexander M. Bronstein,et al.  Parallel algorithms for approximation of distance maps on parametric surfaces , 2008, TOGS.

[27]  Euhanna Ghadimi,et al.  Optimal Parameter Selection for the Alternating Direction Method of Multipliers (ADMM): Quadratic Problems , 2013, IEEE Transactions on Automatic Control.

[28]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[29]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[30]  Lutz Kettner,et al.  Using generic programming for designing a data structure for polyhedral surfaces , 1999, Comput. Geom..

[31]  Shi-Qing Xin,et al.  Parallel chen-han (PCH) algorithm for discrete geodesics , 2013, ACM Trans. Graph..

[32]  Ron Kimmel,et al.  Texture Mapping Using Surface Flattening via Multidimensional Scaling , 2002, IEEE Trans. Vis. Comput. Graph..

[33]  Shi-Qing Xin,et al.  Discrete geodesic graph (DGG) for computing geodesic distances on polyhedral surfaces , 2017, Comput. Aided Geom. Des..

[34]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[35]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[36]  Yong-Jin Liu,et al.  Efficient construction and simplification of Delaunay meshes , 2015, ACM Trans. Graph..

[37]  Ruigang Yang,et al.  Saliency-Aware Video Object Segmentation , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[39]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[40]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[41]  Alexander I. Bobenko,et al.  A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..

[42]  Cewu Lu,et al.  Image smoothing via L0 gradient minimization , 2011, ACM Trans. Graph..

[43]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[44]  Michael K. Ng,et al.  Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods , 2010, SIAM J. Sci. Comput..

[45]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  A. Greenbaum,et al.  Parallelizing preconditioned conjugate gradient algorithms , 1989 .