Equilibrium Approach for CO2 and H2S Absorption with Aqueous Solutions of Alkanolamines: Theory and Parameter Estimation

Acid gas removal from gas streams is mainly executed industrially via aqueous alkanolamines absorption, whose modeling often involves ionic nonequilibrium chemical reactions and mass/heat interfacial transfers. This demands high computational efforts and often nonavailable physical parameters. Also, the role of ions, created by weak dissociations, is not well understood, and despite the high pressures, concentrations, and loadings, idealities are often recruited, such as ideal laws for gas and mass action. In this work, these issues are circumvented by prescribing only molecular species incorporated into a chemical theory equilibrium framework using full thermodynamics via cubic equations of state. Nonvolatile molecular Complex species are formed via equilibrium reactions involving acid gas, water, and alkanolamines (AGWA) systems. The approach is calibrated with large sets of AGWA data, partial pressures, and loadings, by searching equilibrium constants via maximum likelihood nonlinear implicit parameter...

[1]  Gary T. Rochelle,et al.  Effects of the Temperature Bulge in CO2 Absorption from Flue Gas by Aqueous Monoethanolamine , 2008 .

[2]  J. Gmehling,et al.  Experimental determination of carbon dioxide solubility data in aqueous alkanolamine solutions , 2004 .

[3]  Modeling the Absorption of Acidic Gases by Alkanolamine Solutions Incorporating Several Reactions , 2005 .

[4]  Alan E. Mather,et al.  A mathematical model for equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous alkanolamine solutions , 1981 .

[5]  F. D. Otto,et al.  Absorption of CO2 and N2O into aqueous solutions of methyldiethanolamine , 1989 .

[6]  Gary T. Rochelle,et al.  A Thermodynamic Model of Methyldiethanolamine−CO2−H2S−Water , 1997 .

[7]  K. Shen,et al.  Solubility of hydrogen sulfide in aqueous mixtures of monoethanolamine with N-methyldiethanolamine , 1993 .

[8]  A. Trejo,et al.  Gas solubility of H2S in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol at 313, 343, and 393 K in the range 2.5-1036 kPa , 2004 .

[9]  W. S. Winston Ho,et al.  Sterically-Hindered Amines for Acid-Gas Absorption , 1987 .

[10]  M. Michelsen,et al.  A Model for Estimating CO~2 Solubility in Aqueous Alkanolamines , 2005 .

[11]  Steven Pruess,et al.  A rate-based model for the design of gas absorbers for the removal of CO2 and H2S using aqueous solutions of MEA and DEA , 2001 .

[12]  Gary T. Rochelle,et al.  Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems. 2. Representation of H2S and CO2 solubility in aqueous MDEA and CO2 solubility in aqueous mixtures of MDEA with MEA or DEA , 1991 .

[13]  P. V. Danckwerts Absorption by simultaneous diffusion and chemical reaction , 1950 .

[14]  Bishnupada Mandald,et al.  Simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine. , 2006, Environmental science & technology.

[15]  G. Froment,et al.  Rigorous simulation and design of columns for gas absorption and chemical reaction—I: Packed columns , 1986 .

[16]  A. Benamor,et al.  Modeling of CO2 solubility and carbamate concentration in DEA, MDEA and their mixtures using the Deshmukh–Mather model , 2005 .

[17]  J. Gmehling,et al.  Experimental determination of hydrogen sulfide solubility data in aqueous alkanolamine solutions , 2004 .

[18]  A. Veawab,et al.  Characterization and Comparison of the CO2 Absorption Performance into Single and Blended Alkanolamines in a Packed Column , 2004 .

[19]  Erdogan Alper,et al.  Steady-state rate-based modelling for CO2/amine absorption—desorption systems , 1994 .

[20]  O. C. Sandall,et al.  Kinetics and modelling of carbon dioxide absorption into aqueous solutions of N-methyldiethanolamine , 1995 .

[21]  S. Bandyopadhyay,et al.  Absorption of carbon dioxide into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol , 2009 .

[22]  Axel Meisen,et al.  Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor—II: Experimental results and parameter estimation , 2006 .

[23]  Finn Andrew Tobiesen,et al.  Experimental validation of a rigorous absorber model for CO2 postcombustion capture , 2007 .

[24]  Axel Meisen,et al.  Solubility of Carbon Dioxide in Aqueous Mixtures of Alkanolamines , 1994 .

[25]  Bernd Rumpf,et al.  VLE modelling for aqueous systems containing methyldiethanolamine, carbon dioxide and hydrogen sulfide , 1997 .

[26]  Meng-Hui Li,et al.  Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine+water , 2000 .

[27]  John J. Carroll,et al.  Solubility of mixtures of hydrogen sulfide and carbon dioxide in aqueous N-methyldiethanolamine solutions , 1993 .

[28]  H. Britt,et al.  The Estimation of Parameters in Nonlinear, Implicit Models , 1973 .

[29]  W. Fürst,et al.  Representation of CO2 and H2S Absorption by Aqueous Solutions of Diethanolamine Using an Electrolyte Equation of State , 1999 .

[30]  Alan E. Mather,et al.  Solubility of hydrogen sulfide and carbon dioxide in aqueous methyldiethanolamine solutions , 1982 .

[31]  Manuel Laso,et al.  Effective Mass-Transfer Area in a Pilot Plant Column Equipped with Structured Packings and with Ceramic Rings , 1994 .

[32]  S. Bandyopadhyay,et al.  Solubility of CO2 in water + diethanolamine + N-methyldiethanolamine , 2006 .

[33]  P. Carrette,et al.  New Amines for CO2 Capture. I. Mechanisms of Amine Degradation in the Presence of CO2 , 2009 .

[34]  Edward A. Grens,et al.  Evaluation of parameters for nonlinear thermodynamic models , 1978 .

[35]  Reinhard Billet,et al.  Predicting mass transfer in packed columns , 1993 .

[36]  S. Bandyopadhyay,et al.  Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and monoethanolamine , 2006 .

[37]  S. Bandyopadhyay,et al.  Modelling Vapour − Liquid Equilibrium of CO2 in Aqueous N‐Methyldiethanolamine through the Simulated Annealing Algorithm , 2008 .

[38]  A. Trejo,et al.  Solubility of CO2 in aqueous mixtures of diethanolamine with methyldiethanolamine and 2-amino-2-methyl-1-propanol , 1998 .

[39]  Li Chunxi,et al.  Representation of CO2 and H2S solubility in aqueous MDEA solutions using an electrolyte equation of state , 2000 .

[40]  A. Trejo,et al.  Gas solubility of CO2 in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol , 2004 .

[41]  Anton Friedl,et al.  Modelling selective H2S absorption and desorption in an aqueous MDEA-solution using a rate-based non-equilibrium approach , 2004 .

[42]  R. Hook,et al.  An Investigation of Some Sterically Hindered Amines as Potential Carbon Dioxide Scrubbing Compounds , 1997 .

[43]  Gary T. Rochelle,et al.  Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation , 1989 .

[44]  K. Shen,et al.  Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine , 1992 .

[45]  Hallvard F. Svendsen,et al.  Experimental validation of a rate-based model for CO2 capture using an AMP solution , 2007 .

[46]  Erling Halfdan Stenby,et al.  Modeling of CO2 absorber using an AMP solution , 2006 .

[47]  Gianni Astarita,et al.  Gas absorption and desorption with reversible instantaneous chemical reaction , 1980 .