Differential Structure, Tangent Structure, and SDG
暂无分享,去创建一个
[1] Oleksandr Manzyuk,et al. Tangent bundles in differential lambda-categories , 2012, 1202.0411.
[2] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[3] Laurent Regnier,et al. The differential lambda-calculus , 2003, Theor. Comput. Sci..
[4] Abstract tangent functors , 1984 .
[5] J.R.B. Cockett,et al. DIFFERENTIAL RESTRICTION CATEGORIES , 2012, 1208.4068.
[6] L. Coppey. Catégories de Peano et catégories algorithmiques, récursivité , 1984 .
[7] Thomas Ehrhard,et al. On Köthe sequence spaces and linear logic , 2002, Mathematical Structures in Computer Science.
[8] Gilbert Labelle,et al. Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.
[9] P. Michor,et al. The Convenient Setting of Global Analysis , 1997 .
[11] A. Kock,et al. Manifolds in formal differential geometry , 1979 .
[12] Thorsten Altenkirch,et al. Derivatives of Containers , 2003, TLCA.
[13] H. Nishimura. Axiomatic Differential Geometry III-1 , 2012, 1203.3911.
[14] Symmetrisierung an Unterräumen , 1969 .
[15] J. Robin B. Cockett,et al. Restriction categories I: categories of partial maps , 2002, Theor. Comput. Sci..
[16] I. Moerdijk,et al. Models for smooth infinitesimal analysis , 1990 .
[17] Thorsten Altenkirch,et al. Foundations of Software Science and Computation Structures: 6th International Conference, FOSSACS 2003 Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003 Warsaw, Poland, April 7–11, 2003 Proceedings , 2003, Lecture Notes in Computer Science.
[18] A. Kock. Synthetic Differential Geometry , 1981 .
[19] Richard Blute,et al. CARTESIAN DIFFERENTIAL CATEGORIES , 2009 .
[20] Natural transformations of the second tangent functor into itself , 1984 .
[21] J. Robin B. Cockett,et al. Restriction categories III: colimits, partial limits and extensivity , 2007, Mathematical Structures in Computer Science.
[22] Antonio Bucciarelli,et al. Categorical Models for Simply Typed Resource Calculi , 2010, MFPS.
[23] Thomas Ehrhard,et al. A convenient differential category , 2010, ArXiv.
[24] Giulio Manzonetto,et al. Categorical Models for Simply Typed Resource Calculi : Proceedings of the 26th Conference on the Mathematical Foundations of Programming Semantics (MFPS 2010) , 2010 .
[25] R. Street. Skew-closed categories , 2012, 1205.6522.