Sinusoidal Order Estimation Using Angles between Subspaces

We consider the problem of determining the order of a parametric model from a noisy signal based on the geometry of the space. More specifically, we do this using the nontrivial angles between the candidate signal subspace model and the noise subspace. The proposed principle is closely related to the subspace orthogonality property known from the MUSIC algorithm, and we study its properties and compare it to other related measures. For the problem of estimating the number of complex sinusoids in white noise, a computationally efficient implementation exists, and this problem is therefore considered in detail. In computer simulations, we compare the proposed method to various well-known methods for order estimation. These show that the proposed method outperforms the other previously published subspace methods and that it is more robust to the noise being colored than the previously published methods.

[1]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[2]  Andreas Jakobsson,et al.  Multi-Pitch Estimation , 2009, Multi-Pitch Estimation.

[3]  Merico E. Argentati,et al.  Principal Angles between Subspaces in an A-Based Scalar Product: Algorithms and Perturbation Estimates , 2001, SIAM J. Sci. Comput..

[4]  Ehud Weinstein,et al.  Parameter estimation of superimposed signals using the EM algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[5]  Adi Ben-Israel,et al.  Product Cosines of Angles Between Subspaces , 1996 .

[6]  Petre Stoica,et al.  Asymptotical analysis of MUSIC and ESPRIT frequency estimates , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  E. Hannan Determining the number of jumps in a spectrum , 1993 .

[8]  E. Hannan,et al.  DETERMINING THE NUMBER OF TERMS IN A TRIGONOMETRIC REGRESSION , 1994 .

[9]  Barry G. Quinn,et al.  A fast efficient technique for the estimation of frequency , 1991 .

[10]  Andreas Jakobsson,et al.  Joint High-Resolution Fundamental Frequency and Order Estimation , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[11]  Adi Ben-Israel,et al.  On principal angles between subspaces in Rn , 1992 .

[12]  P. Hansen,et al.  Prewhitening for rank-deficient noise in subspace methods for noise reduction , 2005, IEEE Transactions on Signal Processing.

[13]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[14]  H. Akaike A new look at the statistical model identification , 1974 .

[15]  Debasis Kundu,et al.  Estimating the number of sinusoids in additive white noise , 1997, Signal Process..

[16]  G. Bienvenu,et al.  Optimality of high resolution array processing using the eigensystem approach , 1983 .

[17]  Jean-Jacques Fuchs Estimation of the number of signals in the presence of unknown correlated sensor noise , 1992, IEEE Trans. Signal Process..

[18]  Torben Larsen,et al.  On fast implementation of harmonic MUSIC for known and unknown model orders , 2008, 2008 16th European Signal Processing Conference.

[19]  Sheng Jiang,et al.  Angles between Euclidean subspaces , 1996 .

[20]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[21]  P. Koev,et al.  On the largest principal angle between random subspaces , 2006 .

[22]  Josef A. Nossek,et al.  Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden , 1995, IEEE Trans. Signal Process..

[23]  Xiaobao Wang,et al.  AN AIC TYPE ESTIMATOR FOR THE NUMBER OF COSINUSOIDS , 1993 .

[24]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons , 1990, IEEE Trans. Acoust. Speech Signal Process..

[25]  Roland Badeau,et al.  A new perturbation analysis for signal enumeration in rotational invariance techniques , 2006, IEEE Transactions on Signal Processing.

[26]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[27]  Dharmendra Lingaiah,et al.  The Estimation and Tracking of Frequency , 2004 .

[28]  Søren Holdt Jensen,et al.  Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions: Survey and Analysis , 2007, EURASIP J. Adv. Signal Process..

[29]  Petar M. Djuric,et al.  Asymptotic MAP criteria for model selection , 1998, IEEE Trans. Signal Process..

[30]  Georges Bienvenu Influence of the spatial coherence of the background noise on high resolution passive methods , 1979, ICASSP.

[31]  Sabine Van Huffel,et al.  A Shift Invariance-Based Order-Selection Technique for Exponential Data Modelling , 2007, IEEE Signal Processing Letters.

[32]  Petre Stoica,et al.  Performance breakdown of subspace-based methods: prediction and cure , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[33]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[34]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[35]  P. Strobach Low-rank adaptive filters , 1996, IEEE Trans. Signal Process..

[36]  Erik G. Larsson,et al.  Linear Regression With a Sparse Parameter Vector , 2007, IEEE Transactions on Signal Processing.

[37]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[38]  A. Jakobsson,et al.  Sinusoidal Order Estimation using the Subspace Orthogonality and Shift-Invariance Properties , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[39]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[40]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[41]  Phillip A. Regalia,et al.  On the behavior of information theoretic criteria for model order selection , 2001, IEEE Trans. Signal Process..

[42]  Harri Saarnisaari Robustness of the MUSIC algorithm to errors in estimation of the dimensions of the subspaces: delay estimation in DS/SS in the presence of interference , 1999, MILCOM 1999. IEEE Military Communications. Conference Proceedings (Cat. No.99CH36341).

[43]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[44]  John K. Thomas,et al.  The probability of a subspace swap in the SVD , 1995, IEEE Trans. Signal Process..

[45]  Daniel J. Rabideau,et al.  Fast, rank adaptive subspace tracking and applications , 1996, IEEE Trans. Signal Process..

[46]  Gene H. Golub,et al.  Matrix computations , 1983 .

[47]  Wenyuan Xu,et al.  Analysis of the performance and sensitivity of eigendecomposition-based detectors , 1995, IEEE Trans. Signal Process..

[48]  B. G. Quinn,et al.  ESTIMATING THE NUMBER OF TERMS IN A SINUSOIDAL REGRESSION , 1989 .

[49]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[50]  D. R. Farrier,et al.  Theoretical performance prediction of the MUSIC algorithm , 1988 .