Modelling and PIP control of a glasshouse micro-climate

The paper discusses the modelling and control of the climate in a horticultural glasshouse system. A linear, reduced order, control model is obtained using identification and estimation techniques applied to a multivariable, nonlinear simulation model of the glasshouse microclimate. This control model is then used as the basis for the design of Proportional-Integral-Plus (PIP) control systems which regulate the levels of the major climate variables in the glasshouse. Finally, full multivariable extensions of this glasshouse control system design methodology are discussed and evaluated.

[1]  V. Wertz,et al.  Adaptive Optimal Control: The Thinking Man's G.P.C. , 1991 .

[2]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[3]  Thomas Kailath,et al.  Linear Systems , 1980 .

[4]  Peter C. Young,et al.  Direct digital and adaptive control by input-output state variable feedback pole assignment , 1987 .

[5]  Peter C. Young,et al.  Recursive Estimation, Forecasting, and Adaptive Control , 1989 .

[6]  Peter C. Young,et al.  Self-tuning and self-adaptive PIP control systems , 1988 .

[7]  Peter C. Young,et al.  TRUE DIGITAL CONTROL OF GLASSHOUSE SYSTEMS , 1991 .

[8]  David Clarke,et al.  Advances in model-based predictive control , 1994 .

[9]  Peter C. Young,et al.  On the relationship between GPC and PIP control , 1994 .

[10]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[11]  Peter C. Young Process Parameter Estimation and Self Adaptive Control , 1966 .

[12]  Peter C. Young,et al.  Multivariable proportional-integral-plus (PIP) decoupling design for delta operator systems , 1994 .

[13]  J. P. Norton,et al.  An Introduction to Identification , 1986 .

[14]  B. Gopinath On the control of linear multiple input-output systems , 1971 .

[15]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[16]  D. Luenberger Canonical forms for linear multivariable systems , 1967, IEEE Transactions on Automatic Control.

[17]  Peter C. Young,et al.  Identification, Estimation and Control of Continuous-Time Systems Described by Delta Operator Models , 1991 .

[18]  P. Young,et al.  An approach to the linear multivariable servomechanism problem. , 1972 .

[19]  P. F. Davis,et al.  Improvement of greenhouse heating control , 1991 .

[20]  L. Marsh,et al.  Optimal temperature setpoints for greenhouse lettuce , 1991 .

[21]  Peter C. Young,et al.  The Instrumental Variable Method: A Practical Approach to Identification and System Parameter Estimation , 1985 .

[22]  Peter C. Young,et al.  Idenitification, estimation and control of glasshouse systems , 1991 .

[23]  John A. Borrie Modern Control Systems: A Manual of Design Methods , 1986 .

[24]  Z. S. Chalabi,et al.  A generalized optimization strategy for dynamic CO2 enrichment in a greenhouse , 1992 .

[25]  Peter Whittle,et al.  Likelihood and cost as path integrals , 1991 .

[26]  Peter C. Young,et al.  TDC: A Computer Aided Control System Design Package for True Digital Control , 1991 .

[27]  Z. S. Chalabi,et al.  Simulation of the energy balance in a greenhouse , 1989 .