Optoelectronic Performance of Radial-Junction Si Nanopillar and Nanohole Solar Cells

Two typical radial-junction structures, Si nanopillars (SiNP) and nanoholes, were modeled and compared for solar cell applications. From the physical model using the transport equations, the output performances, e.g., short-circuit current density, open-circuit voltage, energy conversion efficiency, fill factor, etc., were simulated. A maximum efficiency of 21.0<formula formulatype="inline"><tex Notation="TeX">$\%$</tex></formula> was predicted for Si nanoholes, demonstrating a superior performance of the radial-junction structure compared to SiNPs (14.6 <formula formulatype="inline"><tex Notation="TeX">$\%$</tex></formula>). Also, the dependence of the conversion efficiency on various structural parameters, e.g., substrate thickness, height, feature radius, junction depth, emitter doping concentration, as well as front and back surface recombination velocities, etc., was investigated, providing a design principle for high-efficiency radial-junction solar cells.

[1]  Kui‐Qing Peng,et al.  Silicon Nanowires for Photovoltaic Solar Energy Conversion , 2011, Advanced materials.

[2]  Guo-Qiang Lo,et al.  Surface nanostructure optimization for solar energy harvesting in Si thin film based solar cells , 2009, International Electron Devices Meeting.

[3]  Martin A. Green,et al.  Twenty‐four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss , 1995 .

[4]  Nathan S Lewis,et al.  Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.

[5]  D. Kwong,et al.  Design High-Efficiency Si Nanopillar-Array-Textured Thin-Film Solar Cell , 2010, IEEE Electron Device Letters.

[6]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[7]  Gang Chen,et al.  Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. , 2010, Nano letters.

[8]  Martin A. Green,et al.  16. 7% efficient, laser textured, buried contact polycrystalline silicon solar cell , 1989 .

[9]  Robert A. Street,et al.  Reflectivity of disordered silicon nanowires , 2008 .

[10]  Z. Pei,et al.  Numerical Simulation on the Photovoltaic Behavior of an Amorphous-Silicon Nanowire-Array Solar Cell , 2009, IEEE Electron Device Letters.

[11]  Arvind Shah,et al.  Efficiency limits for single-junction and tandem solar cells , 2006 .

[12]  Xiao Wei Sun,et al.  Si nanopillar array optimization on Si thin films for solar energy harvesting , 2009 .

[13]  Xin Wang,et al.  High-performance silicon nanohole solar cells. , 2010, Journal of the American Chemical Society.

[14]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[15]  A. Fahrenbruch,et al.  Fundamentals Of Solar Cells: Photovoltaic Solar Energy Conversion , 2012 .

[16]  Fei Wang,et al.  Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application. , 2010, Optics letters.

[17]  Paul Stradins,et al.  Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules , 2009 .

[18]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.