Ergodic theorems for random compact sets and fuzzy variables in Banach spaces
暂无分享,去创建一个
[1] Charles L. Byrne,et al. Remarks on the set-valued integrals of Debreu and Aumann , 1978 .
[2] G. Debreu. Integration of correspondences , 1967 .
[3] M. Puri,et al. Fuzzy Random Variables , 1986 .
[4] H. Rådström. An embedding theorem for spaces of convex sets , 1952 .
[5] J. Schwartz,et al. A vector-valued random ergodic theorem , 1957 .
[6] M. Puri,et al. Differentials of fuzzy functions , 1983 .
[7] Masaaki Miyakoshi,et al. An individual ergodic theorem for fuzzy random variables , 1984 .
[8] M. Puri,et al. Limit theorems for random compact sets in Banach space , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] F. Hiai,et al. Integrals, conditional expectations, and martingales of multivalued functions , 1977 .
[10] K. Arrow,et al. General Competitive Analysis , 1971 .
[11] J. Bán. Radon-Nikody´m theorem and conditional expectation of fuzzy-valued measures and variables , 1990 .
[12] Rudolf Kruse. The strong law of large numbers for fuzzy random variables , 1982, Inf. Sci..
[13] F. Hiai. Radon-Nikodym theorems for set-valued measures , 1978 .
[14] Dan A. Ralescu,et al. Strong Law of Large Numbers for Banach Space Valued Random Sets , 1983 .
[15] R. Aumann. INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .
[16] Henry Hermes,et al. Calculus of Set Valued Functions and Control , 1968 .
[17] P. Billingsley,et al. Convergence of Probability Measures , 1969 .