Expression of angiogenesis‐related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis

Pulmonary arteries of patients with severe pulmonary hypertension (SPH) presenting in an idiopathic form (primary PH‐PPH) or associated with congenital heart malformations or collagen vascular diseases show plexiform lesions. It is postulated that in lungs with SPH, endothelial cells in plexiform lesions express genes encoding for proteins involved in angiogenesis, in particular, vascular endothelial growth factor (VEGF) and those involved in VEGF receptor‐2 (VEGFR‐2) signalling. On immunohistochemistry and in situ hybridization, endothelial cells in the plexiform lesions expressed VEGF mRNA and protein and overexpressed the mRNA and protein of VEGFR‐2, and the transcription factor subunits HIF‐1α and HIF‐1β of hypoxia inducible factor, which are responsible for the hypoxia‐dependent induction of VEGF. When compared with normal lungs, SPH lungs showed decreased expression of the kinases PI3 kinase and src, which, together with Akt, relay the signal transduction downstream of VEGFR‐2. Because markers of angiogenesis are expressed in plexiform lesions in SPH, it is proposed that these lesions may form by a process of disordered angiogenesis. Copyright © 2001 John Wiley & Sons, Ltd.

[1]  Lieve Moons,et al.  Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele , 1996, Nature.

[2]  N. Voelkel,et al.  Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. , 1995, The Journal of clinical investigation.

[3]  H. Dvorak,et al.  Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. , 1983, Science.

[4]  M. Gassmann,et al.  Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. , 1998, Genes & development.

[5]  R. Trembath,et al.  Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension , 2000, Nature Genetics.

[6]  A. Hislop,et al.  Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation. , 2000, American journal of respiratory cell and molecular biology.

[7]  S. Kourembanas,et al.  Increased vascular endothelial growth factor production in the lungs of rats with hypoxia-induced pulmonary hypertension. , 1998, American journal of respiratory cell and molecular biology.

[8]  I. Buschmann,et al.  Arteriogenesis Versus Angiogenesis: Two Mechanisms of Vessel Growth. , 1999, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[9]  G. Semenza,et al.  Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. , 1998, American journal of physiology. Lung cellular and molecular physiology.

[10]  Vishva Dixit,et al.  Vascular Endothelial Growth Factor Regulates Endothelial Cell Survival through the Phosphatidylinositol 3′-Kinase/Akt Signal Transduction Pathway , 1998, The Journal of Biological Chemistry.

[11]  D. Badesch,et al.  Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. , 1999, American journal of respiratory and critical care medicine.

[12]  N. Voelkel,et al.  Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. , 1997, Human pathology.

[13]  N. Voelkel,et al.  Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. , 1994, American journal of respiratory cell and molecular biology.

[14]  Atsushi Namiki,et al.  Hypoxia Induces Vascular Endothelial Growth Factor in Cultured Human Endothelial Cells (*) , 1995, The Journal of Biological Chemistry.

[15]  D A Hilton,et al.  Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. , 1999, Cancer research.

[16]  R. Eddy,et al.  Identification of a new endothelial cell growth factor receptor tyrosine kinase. , 1991, Oncogene.

[17]  N. Olsen,et al.  Vascular permeability factor/endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissue , 1994, The Journal of experimental medicine.

[18]  G. Semenza,et al.  Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. , 1999, Annual review of cell and developmental biology.

[19]  M. Marrero,et al.  Vascular Endothelial Growth Factor Signals Endothelial Cell Production of Nitric Oxide and Prostacyclin through Flk-1/KDR Activation of c-Src* , 1999, The Journal of Biological Chemistry.

[20]  N. Voelkel,et al.  Microsatellite Instability of Endothelial Cell Growth and Apoptosis Genes Within Plexiform Lesions in Primary Pulmonary Hypertension , 2001, Circulation research.

[21]  K. Alitalo,et al.  Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas. , 1996, The American journal of pathology.

[22]  D. Gospodarowicz,et al.  Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. Hodge,et al.  Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. , 2000, American journal of human genetics.

[24]  P. Hirth,et al.  Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. , 2000, The Journal of clinical investigation.

[25]  E. Keshet,et al.  A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. , 1998, Development.

[26]  K. M. Smith,et al.  Classification and nomenclature , 1980 .

[27]  G. Semenza,et al.  Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1 , 1996, Molecular and cellular biology.

[28]  D. Marmé,et al.  AIDS-associated Kaposi's sarcoma cells in culture express vascular endothelial growth factor. , 1992, Biochemical and biophysical research communications.

[29]  J. Martial,et al.  16K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. , 1999, Molecular endocrinology.

[30]  A. Bogers,et al.  Enhanced expression of vascular endothelial growth factor in pulmonary plexogenic arteriopathy due to congenital heart disease , 2000, The Journal of pathology.

[31]  G. Semenza,et al.  Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[32]  P. Hirth,et al.  Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death‐dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[33]  M. Shibuya,et al.  Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. , 1990, Oncogene.

[34]  G. Semenza,et al.  Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. , 1999, Cancer research.

[35]  J. Edwards,et al.  The Pathology of Hypertensive Pulmonary Vascular Disease: A Description of Six Grades of Structural Changes in the Pulmonary Arteries with Special Reference to Congenital Cardiac Septal Defects , 1958, Circulation.

[36]  K. Shroyer,et al.  Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. , 1998, The Journal of clinical investigation.

[37]  B. Groves,et al.  Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. , 1994, The American journal of pathology.

[38]  E. Keshet,et al.  Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis , 1992, Nature.

[39]  N. Ferrara,et al.  Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. , 1989, Biochemical and biophysical research communications.

[40]  T. Beaty,et al.  Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. , 1999, The Journal of clinical investigation.

[41]  L. Liotta,et al.  Monoclonal origin of multicentric Kaposi's sarcoma lesions. , 1997, The New England journal of medicine.

[42]  J. Folkman,et al.  What is the role of endothelial cells in angiogenesis? , 1984, Laboratory investigation; a journal of technical methods and pathology.

[43]  Douglas Hanahan,et al.  Signaling Vascular Morphogenesis and Maintenance , 1997, Science.

[44]  R. L. Williams,et al.  Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. , 1999, The American journal of pathology.