Mitochondria in the human heart

The heart relies mainly on mitochondrial metabolism to provide the energy needed for pumping blood to oxygenate the organs of the body. The study of mitochondrial function in the human heart faces many obstacles and elucidation of the role of mitochondria in cardiac diseases has relied mainly on studies with animal models. Cardiac diseases are the leading cause of mortality worldwide. With the emergence of new therapies to treat and prevent heart disease, some aiming at metabolic modulation, a need for acquiring a better understanding of mitochondrial function in the human heart becomes apparent. Our review is aimed at specific evaluation of the human heart in terms of (1) methods to understand mitochondrial function, with particular emphasis on integrated function, (2) data on the role of mitochondrial dysfunction in cardiovascular disease, and (3) possible applications of this knowledge in the treatment of patients with cardiac disease.

[1]  C. Sylvén,et al.  Key enzymes of myocardial energy metabolism in papillary muscle of patients with mitral valve disease--relation to left ventricular function. , 1989, Scandinavian journal of thoracic and cardiovascular surgery.

[2]  K. Clarke,et al.  Energetic correlates of cardiac failure: changes in the creatine kinase system in the failing myocardium. , 1990, European heart journal.

[3]  C. Chidsey,et al.  Biochemical studies of energy production in the failing human heart. , 1966, The Journal of clinical investigation.

[4]  W. Kunz,et al.  Functional characterization of mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers. , 1993, Biochimica et biophysica acta.

[5]  S. Neubauer,et al.  31P Magnetic Resonance Spectroscopy in Dilated Cardiomyopathy and Coronary Artery Disease: Altered Cardiac High‐Energy Phosphate Metabolism in Heart Failure , 1992, Circulation.

[6]  Z. Bosnjak,et al.  Age-related Attenuation of Isoflurane Preconditioning in Human Atrial Cardiomyocytes: Roles for Mitochondrial Respiration and Sarcolemmal Adenosine Triphosphate–sensitive Potassium Channel Activity , 2008, Anesthesiology.

[7]  A. Schwartz,et al.  Some biochemical studies on subcellular systems isolated from fresh recipient human cardiac tissue obtained during transplantation. , 1971, The American journal of cardiology.

[8]  N. Silverman,et al.  Abnormal mitochondrial respiration in failed human myocardium. , 2000, Journal of molecular and cellular cardiology.

[9]  D. Kerr,et al.  Oxidative phosphorylation analysis: assessing the integrated functional activity of human skeletal muscle mitochondria--case studies. , 2004, Mitochondrion.

[10]  T. Bourgeron,et al.  Reference charts for respiratory chain activities in human tissues. , 1994, Clinica chimica acta; international journal of clinical chemistry.

[11]  R. Ferrari,et al.  Anti-ischaemic effect of ivabradine. , 2006, Pharmacological research.

[12]  R. Kapsa,et al.  Mitochondrial respiratory chain activity in idiopathic dilated cardiomyopathy. , 2000, Journal of cardiac failure.

[13]  H. Figulla,et al.  Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. , 1990, European heart journal.

[14]  B. Rajagopalan,et al.  Mitral regurgitation: impaired systolic function, eccentric hypertrophy, and increased severity are linked to lower phosphocreatine/ATP ratios in humans. , 1998, Circulation.

[15]  K. Clarke,et al.  Mitochondria and heart failure , 2007, Current opinion in clinical nutrition and metabolic care.

[16]  M. Eimre,et al.  Compartmentation of energy metabolism in atrial myocardium of patients undergoing cardiac surgery , 2005, Molecular and Cellular Biochemistry.

[17]  S. Papa,et al.  Low Reserve of Cytochrome c Oxidase Capacity in Vivo in the Respiratory Chain of a Variety of Human Cell Types* , 1998, The Journal of Biological Chemistry.

[18]  P. Sótonyi,et al.  Ventricular adenine nucleotide translocator mRNA is upregulated in dilated cardiomyopathy. , 1993, Cardiovascular research.

[19]  R. Magorien,et al.  Improvement of human myocardial mitochondria after dobutamine: a quantitative ultrastructural study. , 1980, The Journal of pharmacology and experimental therapeutics.

[20]  S. Neubauer,et al.  Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. , 1997, Circulation.

[21]  C. Elger,et al.  Flux control of cytochrome c oxidase in human skeletal muscle. , 2000, The Journal of biological chemistry.

[22]  G. Radda,et al.  Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy , 1991, The Lancet.

[23]  M. Oz,et al.  Left ventricular assist device implantation augments nitric oxide dependent control of mitochondrial respiration in failing human hearts. , 2000, Journal of the American College of Cardiology.

[24]  Ò. Miró,et al.  Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. , 2000, Cardiovascular research.

[25]  J. Kucharská,et al.  Coenzyme Q10 depletion and mitochondrial energy disturbances in rejection development in patients after heart transplantation , 1999, BioFactors.

[26]  A. Kuznetsov,et al.  Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. , 1987, Biochimica et biophysica acta.

[27]  J. Ingwall,et al.  Creatine kinase system in failing and nonfailing human myocardium. , 1996, Circulation.

[28]  S. Zierz,et al.  Myocardial respiratory chain enzyme activities in idiopathic dilated cardiomyopathy, and comparison with those in atherosclerotic coronary artery disease and valvular aortic stenosis. , 1993, The American journal of cardiology.

[29]  J. Knuuti,et al.  Myocardial fatty acid metabolism and cardiac performance in heart failure , 2008, Current cardiology reports.

[30]  K. Clarke,et al.  Modification of myocardial substrate use as a therapy for heart failure , 2006, Nature Clinical Practice Cardiovascular Medicine.

[31]  S. Zierz,et al.  Positive correlation between aortic valve pressure gradient and mitochondrial respiratory chain capacity in hypertrophied human left ventricle , 1992, The clinical investigator.

[32]  S. Zierz,et al.  Mitochondrial respiratory chain enzyme activities in tetralogy of Fallot , 1994, The clinical investigator.

[33]  E. Arbustini,et al.  Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. , 1998, The American journal of pathology.

[34]  R. Hetzer,et al.  An isoform shift in the cardiac adenine nucleotide translocase expression alters the kinetic properties of the carrier in dilated cardiomyopathy , 2006, European journal of heart failure.

[35]  B. Robinson,et al.  Familial Cardiomyopathy with Cataracts and Lactic Acidosis: A Defect in Complex I (NADH-Dehydrogenase) of the Mitochondria Respiratory Chain , 1996, Pediatric Research.

[36]  A. Kuznetsov,et al.  Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy. , 1991, The American journal of physiology.

[37]  C. Hoppel,et al.  Hamster cardiomyopathy. A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria. , 1982, The Journal of biological chemistry.

[38]  J. Zoll,et al.  Evaluation of quantitative and qualitative aspects of mitochondrial function in human skeletal and cardiac muscles , 2004, Molecular and Cellular Biochemistry.

[39]  B. Bornstein,et al.  Mitochondrial gene expression and respiratory enzyme activities in cardiac diseases. , 1998, Biochimica et biophysica acta.

[40]  S. Mital,et al.  Mitochondrial respiratory abnormalities in patients with end-stage congenital heart disease. , 2004, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[41]  C. Hoppel,et al.  Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. , 1977, The Journal of biological chemistry.

[42]  C. Hardy,et al.  Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. , 1991, American heart journal.

[43]  A. Dörner,et al.  The Myocardial Expression of the Adenine Nucleotide Translocator Isoforms is Specifically Altered in Dilated Cardiomyopathy , 2000, Herz.

[44]  J. Mazat,et al.  Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. , 2000, The Biochemical journal.

[45]  K. Mishra,et al.  Impairment of mitochondrial respiratory chain enzyme activities in tetralogy of Fallot. , 2007, Clinica chimica acta; international journal of clinical chemistry.

[46]  H. Schultheiss Dysfunction of the ADP/ATP carrier as a causative factor for the disturbance of the myocardial energy metabolism in dilated cardiomyopathy. , 1992, Basic research in cardiology.

[47]  W. Kunz,et al.  Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo , 1998 .

[48]  D. V. Unverferth,et al.  Human myocardial adenosine triphosphatase activities in health and heart failure. , 1988, American heart journal.

[49]  P. H. Cox,et al.  Acute Improvement of Cardiac Function with Intravenous L‐Propionylcarnitine in Humans , 1992, Journal of cardiovascular pharmacology.

[50]  T. Bourgeron,et al.  Biochemical and molecular investigations in respiratory chain deficiencies. , 1994, Clinica chimica acta; international journal of clinical chemistry.

[51]  Robert A. Harris,et al.  Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism , 2008, Nature Genetics.

[52]  M. Oz,et al.  Improvement of myocardial mitochondrial function after hemodynamic support with left ventricular assist devices in patients with heart failure. , 1998, The Journal of thoracic and cardiovascular surgery.

[53]  Jean-Pierre Mazat,et al.  Mitochondrial threshold effects. , 2003, The Biochemical journal.

[54]  C. Hoppel,et al.  Fatty acid import into mitochondria. , 2000, Biochimica et biophysica acta.

[55]  A. Khaghani,et al.  Energetics and function of the failing human heart with dilated or hypertrophic cardiomyopathy , 1999, European journal of clinical investigation.

[56]  Stefan Neubauer,et al.  Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. , 2002, Journal of the American College of Cardiology.

[57]  S. Rohrbach,et al.  Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. , 2002, Journal of the American College of Cardiology.

[58]  G. Radda,et al.  Uncoupling proteins in human heart , 2004, The Lancet.

[59]  C. Sylvén,et al.  Key enzymes of myocardial energy metabolism in patients with valvular heart disease: relation to left ventricular function. , 1988, Acta physiologica Scandinavica.

[60]  J. Marín-García,et al.  Impaired mitochondrial function in idiopathic dilated cardiomyopathy: biochemical and molecular analysis. , 1995, Journal of cardiac failure.

[61]  A. Garnier,et al.  Heart failure: a model of cardiac and skeletal muscle energetic failure , 2006, Pflügers Archiv.

[62]  R. Margreiter,et al.  Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells , 2008, Nature Protocols.

[63]  A. Schmidt,et al.  HEAT Repeats Mediate Plasma Membrane Localization of Tor2p in Yeast* , 2000, The Journal of Biological Chemistry.

[64]  M. Latronico,et al.  Heart failure: targeting transcriptional and post-transcriptional control mechanisms of hypertrophy for treatment. , 2008, The international journal of biochemistry & cell biology.

[65]  J. Marín-García,et al.  Human mitochondrial function during cardiac growth and development , 1998, Molecular and Cellular Biochemistry.

[66]  A. Dörner,et al.  Adenine nucleotide translocator in dilated cardiomyopathy: pathophysiological alterations in expression and function. , 1997 .

[67]  D. Fry,et al.  Subpopulations of human heart mitochondria. , 1986, The Journal of surgical research.

[68]  C. Hoppel,et al.  Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. , 2007, American journal of physiology. Cell physiology.

[69]  A. Kuznetsov,et al.  The creatine kinase system and cardiomyopathy. , 1992, The American journal of cardiovascular pathology.

[70]  G. Attardi,et al.  In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.