Trade-off capacities of the quantum Hadamard channels

Coding theorems in quantum Shannon theory express the ultimate rates at which a sender can transmit information over a noisy quantum channel. More often than not, the known formulas expressing these transmission rates are intractable, requiring an optimization over an infinite number of uses of the channel. Researchers have rarely found quantum channels with a tractable classical or quantum capacity, but when such a finding occurs, it demonstrates a complete understanding of that channel's capabilities for transmitting classical or quantum information. Here we show that the three-dimensional capacity region for entanglement-assisted transmission of classical and quantum information is tractable for the Hadamard class of channels. Examples of Hadamard channels include generalized dephasing channels, cloning channels, and the Unruh channel. The generalized dephasing channels and the cloning channels are natural processes that occur in quantum systems through the loss of quantum coherence or stimulated emission, respectively. The Unruh channel is a noisy process that occurs in relativistic quantum information theory as a result of the Unruh effect and bears a strong relationship to the cloning channels. We give exact formulas for the entanglement-assisted classical and quantum communication capacity regions of these channels. The coding strategy for each of these examples ismore » superior to a naieve time-sharing strategy, and we introduce a measure to determine this improvement.« less

[1]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[2]  Andreas J. Winter,et al.  Random quantum codes from Gaussian ensembles and an uncertainty relation , 2007, Open Syst. Inf. Dyn..

[3]  Kamil Bradler,et al.  An Infinite Sequence of Additive Channels: The Classical Capacity of Cloning Channels , 2009, IEEE Transactions on Information Theory.

[4]  Zeilinger,et al.  Optimal quantum cloning via stimulated emission , 2000, Physical review letters.

[5]  W. Unruh Notes on black-hole evaporation , 1976 .

[6]  C. King Additivity for unital qubit channels , 2001, quant-ph/0103156.

[7]  Aram W. Harrow,et al.  A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[8]  V. Sidoravicius,et al.  New Trends in Mathematical Physics , 2009 .

[9]  O. Hirota,et al.  Quantum Information, Statistics, Probability , 2004 .

[10]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[11]  E. Beckenbach CONVEX FUNCTIONS , 2007 .

[12]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[13]  D. Varberg Convex Functions , 1973 .

[14]  Greg Kuperberg,et al.  The capacity of hybrid quantum memory , 2002, IEEE Trans. Inf. Theory.

[15]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[16]  R. Werner,et al.  On Some Additivity Problems in Quantum Information Theory , 2000, math-ph/0003002.

[17]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[18]  P. Shor Equivalence of Additivity Questions in Quantum Information Theory , 2003, quant-ph/0305035.

[19]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[20]  広田 修,et al.  Quantum information, statistics, probability , 2004 .

[21]  Mark M. Wilde,et al.  Trading classical communication, quantum communication, and entanglement in quantum Shannon theory , 2009, IEEE Transactions on Information Theory.

[22]  Debbie W. Leung,et al.  Remote preparation of quantum states , 2005, IEEE Transactions on Information Theory.

[23]  M. Ruskai,et al.  Entanglement Breaking Channels , 2003, quant-ph/0302031.

[24]  Nilanjana Datta,et al.  ADDITIVITY FOR TRANSPOSE DEPOLARIZING CHANNELS , 2004 .

[25]  Stephen M. Barnett,et al.  Quantum information , 2005, Acta Physica Polonica A.

[26]  Peter W. Milonni,et al.  PHOTONS CANNOT ALWAYS BE REPLICATED , 1982 .

[27]  Andreas J. Winter,et al.  Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1 , 2008, ArXiv.

[28]  J.-M. Goethals,et al.  IEEE international symposium on information theory , 1981 .

[29]  David P. DiVincenzo,et al.  Efficient one- and two-qubit pulsed gates for an oscillator-stabilized Josephson qubit , 2007, 0709.1478.

[30]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[31]  Mark M. Wilde,et al.  Unified quantum convolutional coding , 2008, 2008 IEEE International Symposium on Information Theory.

[32]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.

[33]  Michal Horodecki,et al.  A Decoupling Approach to the Quantum Capacity , 2007, Open Syst. Inf. Dyn..

[34]  P. Shor Equivalence of Additivity Questions in Quantum Information Theory , 2004 .

[35]  Min-Hsiu Hsieh,et al.  Secret-key-assisted private classical communication capacity over quantum channels , 2008 .

[36]  Mark M. Wilde,et al.  Entanglement-Assisted Quantum Convolutional Coding , 2007, ArXiv.

[37]  P. Hayden,et al.  Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication , 2003, quant-ph/0308143.

[38]  M. Fukuda Extending additivity from symmetric to asymmetric channels , 2005, quant-ph/0505022.

[39]  A. W. Roberts CHAPTER 4.2 – Convex Functions , 1993 .

[40]  A. Holevo Remarks on the classical capacity of quantum channel , 2002, quant-ph/0212025.

[41]  Howard Barnum,et al.  On the reversible extraction of classical information from a quantum source , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  Mark M. Wilde,et al.  Public and private communication with a quantum channel and a secret key , 2009, 0903.3920.

[43]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[44]  S. Massar,et al.  Optimal Quantum Cloning Machines , 1997, quant-ph/9705046.

[45]  Seth Lloyd,et al.  Quantum Coding Theorem from Privacy and Distinguishability , 2008, Open Syst. Inf. Dyn..

[46]  James Copland,et al.  PROCEEDINGS OF THE ROYAL SOCIETY. , 2022 .

[47]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[48]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[49]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[50]  Masato Koashi,et al.  Teleportation cost and hybrid compression of quantum signals , 2001 .

[51]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[52]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[53]  Lars-Ake Levin,et al.  Problems of Information Transmission , 1973 .

[54]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[55]  Prakash Panangaden,et al.  Private information via the Unruh effect , 2008, 0807.4536.

[56]  J. Smolin,et al.  Degenerate quantum codes for Pauli channels. , 2006, Physical review letters.

[57]  A. Winter,et al.  Trading quantum for classical resources in quantum data compression , 2002, quant-ph/0204038.

[58]  Barry Mazur,et al.  Current developments in mathematics, 2003 , 2001 .

[59]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[60]  Patrick P. Bergmans,et al.  Random coding theorem for broadcast channels with degraded components , 1973, IEEE Trans. Inf. Theory.

[61]  Peter W. Shor,et al.  The Additivity Conjecture in Quantum Information Theory , 2005 .

[62]  D. Bouwmeester,et al.  Experimental Quantum Cloning of Single Photons , 2002, Science.

[63]  I Devetak,et al.  Relating quantum privacy and quantum coherence: an operational approach. , 2004, Physical review letters.

[64]  I. Devetak,et al.  General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.

[65]  P. Shor Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.

[66]  Michal Horodecki,et al.  On Hastings' Counterexamples to the Minimum Output Entropy Additivity Conjecture , 2009, Open Syst. Inf. Dyn..

[67]  Physical Review , 1965, Nature.

[68]  M. Ruskai,et al.  The structure of degradable quantum channels , 2008, 0802.1360.

[69]  David Jerison,et al.  Current developments in mathematics 2013 , 2003 .

[70]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[71]  Christopher King,et al.  Properties of Conjugate Channels with Applications to Additivity and Multiplicativity , 2005 .

[72]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[73]  P. Hayden,et al.  Conjugate degradability and the quantum capacity of cloning channels , 2009, 0909.3297.

[74]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[75]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[76]  V. Giovannetti,et al.  Information-capacity description of spin-chain correlations , 2004, quant-ph/0405110.

[77]  Min-Hsiu Hsieh,et al.  Classical Enhancement of Quantum Error-Correcting Codes , 2008, 0802.2414.

[78]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[79]  Christopher King,et al.  Comments on Hastings’ Additivity Counterexamples , 2009, 0905.3697.

[80]  C. King The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.

[81]  Andreas J. Winter,et al.  Entanglement-Assisted Capacity of Quantum Multiple-Access Channels , 2008, IEEE Transactions on Information Theory.

[82]  Rochus Klesse,et al.  A Random Coding Based Proof for the Quantum Coding Theorem , 2007, Open Syst. Inf. Dyn..