Hybrid pseudospectral–finite difference method for solving a 3D heat conduction equation in a submicroscale thin film

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[2]  Jun Zhang,et al.  Unconditionally Stable Finite Difference Scheme and Iterative Solution of 2D Microscale Heat Transport Equation , 2001 .

[3]  Steven A. Orszag,et al.  Comparison of Pseudospectral and Spectral Approximation , 1972 .

[4]  A. Haji-Sheikh,et al.  A unified solution for heat conduction in thin films , 1999 .

[5]  Weizhong Dai,et al.  A compact finite-difference scheme for solving a one-dimensional heat transport equation at the microscale: 431 , 2001 .

[6]  D. Tzou,et al.  On the Wave Theory in Heat Conduction , 1994 .

[7]  Weizhong Dai,et al.  A finite difference scheme for solving the heat transport equation at the microscale , 1999 .

[8]  Weizhong Dai,et al.  An unconditionally stable finite difference scheme for solving a 3D heat transport equation in a sub-microscale thin film , 2002 .

[9]  A. Malek,et al.  PSEUDOSPECTRAL COLLOCATION METHODS FOR FOURTH ORDER DIFFERENTIAL EQUATIONS , 1994 .

[10]  Weizhong Dai,et al.  A finite difference scheme for solving a three‐dimensional heat transport equation in a thin film with microscale thickness , 2001 .

[11]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[12]  Timothy Nigel Phillips,et al.  Viscoelastic flow in an undulating tube using spectral methods , 2004 .

[13]  Jun Zhang,et al.  High accuracy stable numerical solution of 1D microscale heat transport equation , 2001 .

[14]  R. Quintanilla,et al.  A note on stability in dual-phase-lag heat conduction , 2006 .

[15]  Jun Zhang,et al.  Iterative solution and finite difference approximations to 3D microscale heat transport equation , 2001 .