High-resolution imaging of a vineyard in south of France using ground penetrating radar, electromagnetic induction and electrical resistivity tomography

[1]  Jan Vanderborght,et al.  Electromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography , 2010 .

[2]  C. Leeuwen,et al.  Soils, rootstocks and grapevine varieties in prestigious Bordeaux vineyards and their impact on yield and quality , 2010 .

[3]  Harry Vereecken,et al.  Efficient loop antenna modeling for zero-offset, off-ground electromagnetic induction in multilayered media , 2010 .

[4]  Evert Slob,et al.  Joint full-waveform analysis of off-ground zero-offset ground penetrating radar and electromagnetic induction synthetic data for estimating soil electrical properties , 2010 .

[5]  E. Maire,et al.  A 2D electrical resistivity tomography survey of a vineyard plot of the Gaillac Appellation (France): interpretation with respect to possible implications on vine water supply , 2010 .

[6]  S Lambot,et al.  Full-waveform modeling of ground-coupled GPR antennas for wave propagation in multilayered media: The problem solved? , 2010, Proceedings of the XIII Internarional Conference on Ground Penetrating Radar.

[7]  Bruno Basso,et al.  Two-dimensional spatial and temporal variation of soil physical properties in tillage systems using electrical resistivity tomography. , 2010 .

[8]  H. Ojeda,et al.  Identification and significance of sources of spatial variation in grapevine water status , 2010 .

[9]  Philippe Lagacherie,et al.  Mapping soil units within a vineyard using statistics associated with high-resolution apparent soil electrical conductivity data and factorial discriminant analysis. , 2009 .

[10]  Benjamin Bois,et al.  Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes , 2009 .

[11]  S. Pellegrini,et al.  Relevance of the Lin's and Host hydropedological models to predict grape yield and wine quality , 2009 .

[12]  Francesco Morari,et al.  Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors , 2009 .

[13]  Michel Dabas,et al.  Comparison of instruments for geoelectrical soil mapping at the field scale , 2009 .

[14]  Fabrizio Mazzetto,et al.  COMPARING COMMERCIAL OPTICAL SENSORS FOR CROP MONITORING TASKS IN PRECISION VITICULTURE , 2009 .

[15]  B. Tisseyre,et al.  The potential of high spatial resolution information to define within-vineyard zones related to vine water status , 2008, Precision Agriculture.

[16]  Evert Slob,et al.  Ground Penetrating Radar in Hydrogeophysics , 2008 .

[17]  Robert G. V. Bramley,et al.  Terroir and precision viticulture: are they compatible , 2007 .

[18]  Cornelis van Leeuwen,et al.  "Terroir" effect, as a result of enviromental stess, depends more on soil depth than on soil type ( Vitis vinifera L. cv. Grenache Noir, Côtes du Rhône, France, 2000) , 2006 .

[19]  P. Lagacherie,et al.  Spatial variability of soil compaction over a vineyard region in relation with soils and cultivation operations , 2006 .

[20]  P. Lagacherie,et al.  Effect of deep tillage for vineyard establishment on soil structure: A case study in Southern France , 2006 .

[21]  Gérard Barbeau,et al.  Contribution of soil electric resistivity measurements to the studies on soil/grapevine water relations , 2006 .

[22]  C. van Leeuwen,et al.  The concept of terroir in viticulture , 2006 .

[23]  Emmanuelle Vaudour,et al.  Grapevine responses to terroir: a global approach , 2005 .

[24]  Y. Rubin,et al.  Soil moisture content estimation using ground-penetrating radar reflection data , 2005 .

[25]  R. Bramley,et al.  Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages , 2005 .

[26]  David Lamb,et al.  Vineyard trellising with steel posts distorts data from EM soil surveys , 2005 .

[27]  Shmulik P. Friedman,et al.  Soil properties influencing apparent electrical conductivity: a review , 2005 .

[28]  D. Corwin,et al.  Apparent soil electrical conductivity measurements in agriculture , 2005 .

[29]  H. Boizard,et al.  Structural heterogeneity of the soil tilled layer as characterized by 2D electrical resistivity surveying , 2004 .

[30]  Marnik Vanclooster,et al.  Modeling of ground-penetrating Radar for accurate characterization of subsurface electric properties , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Marnik Vanclooster,et al.  Analysis of alternative measurement strategies for the inverse optimization of the hydraulic properties of a volcanic soil , 2004 .

[32]  Ian J. Yule,et al.  Rapid identification of soil textural and management zones using electromagnetic induction sensing of soils , 2004 .

[33]  Y. Rubin,et al.  The quest for better wine using geophysics , 2004 .

[34]  Alain Deloire,et al.  Vine and water: a short review , 2004 .

[35]  A. P. Annan,et al.  Measuring Soil Water Content with Ground Penetrating Radar: A Review , 2003 .

[36]  Susan S. Hubbard,et al.  Field‐scale estimation of volumetric water content using ground‐penetrating radar ground wave techniques , 2003 .

[37]  Susan S. Hubbard,et al.  Mapping the volumetric soil water content of a California vineyard using high-frequency GPR ground wave data , 2002 .

[38]  D. Lamb,et al.  Optical remote sensing applications in viticulture - a review , 2002 .

[39]  N. Kitchen,et al.  Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture , 2001 .

[40]  M. Dabas,et al.  Recent developments in shallow‐depth electrical and electrostatic prospecting using mobile arrays , 1998 .

[41]  H. Ojeda,et al.  Influence of water status on mineral composition of berries in ‘Grenache Noir’ ( Vitis vinifera L.) , 2009 .

[42]  J. V. Stafford,et al.  Test of NDVI information for a relevant vineyard zoning related to vine water status. , 2007 .

[43]  Scott B. Jones,et al.  Comparing bulk soil electrical conductivity determination using the DUALEM-1S and EM38-DD electromagnetic induction instruments , 2007 .

[44]  H. Ojeda,et al.  Precision viticulture and water status : mapping the predawn water potential to define within vineyard zones , 2005 .

[45]  H. Ojeda,et al.  Precision viticulture and water status II: Quantitative and qualitative performance of different within field zones, defined from water potential mapping. , 2005 .

[46]  Rainer Horn,et al.  Applicability of geophysical prospecting methods for mapping of soil compaction and variability of soil texture on farm land , 2005 .

[47]  Cornelis van Leeuwen,et al.  Influence of Climate, Soil, and Cultivar on Terroir , 2004, American Journal of Enology and Viticulture.

[48]  H. Ojeda,et al.  Influence of water deficits on grape berry growth , 2001 .

[49]  D. Baize,et al.  A sound reference base for soils. , 1998 .

[50]  G. Callot,et al.  LES SOLS VITICOLES DU LANGUEDOC : UN ETAT PREOCCUPANT , 1998 .

[51]  J. Tabbagh Traitement des données et élimination des valeurs erronées en prospection électrique en continu , 1988 .