Local search for string problems: Brute-force is essentially optimal

We address the problem of whether the brute-force procedure for the local improvement step in a local search algorithm can substantially be improved when applied to classical NP-hard string problems. We examine four of the more prominent problems in this domain: Closest String, Longest Common Subsequence, Shortest Common Supersequence, and Shortest Common Superstring. Herein, we consider arguably the most fundamental string distance measure, namely the Hamming distance, which has been applied in practical local search implementations for string problems. Our results indicate that for all four problems, the brute-force algorithm cannot be considerably improved.

[1]  Dániel Marx,et al.  On the hardness of losing weight , 2012, TALG.

[2]  Dániel Marx,et al.  Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.

[3]  Christian Komusiewicz,et al.  On the parameterized complexity of consensus clustering , 2011, Theor. Comput. Sci..

[4]  Michael R. Fellows,et al.  Local Search: Is Brute-Force Avoidable? , 2009, IJCAI.

[5]  Fedor V. Fomin,et al.  Fast Local Search Algorithm for Weighted Feedback Arc Set in Tournaments , 2010, AAAI.

[6]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[7]  P. Pardalos,et al.  Optimization techniques for string selection and comparison problems in genomics , 2005, IEEE Engineering in Medicine and Biology Magazine.

[8]  Stefan Szeider The parameterized complexity of k-flip local search for SAT and MAX SAT , 2011, Discret. Optim..

[9]  Dániel Marx,et al.  Stable assignment with couples: Parameterized complexity and local search , 2009, Discret. Optim..

[10]  E. Balas,et al.  New classes of efficiently solvable generalized Traveling Salesman Problems , 1999, Ann. Oper. Res..

[11]  Ge Xia,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[12]  Dániel Marx,et al.  Searching the k-change neighborhood for TSP is W[1]-hard , 2008, Oper. Res. Lett..

[13]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[14]  Rolf Niedermeier,et al.  Fixed-Parameter Algorithms for CLOSEST STRING and Related Problems , 2003, Algorithmica.

[15]  Rolf Niedermeier,et al.  The Parameterized Complexity of Local Search for TSP, More Refined , 2011, Algorithmica.

[16]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[17]  Panos M. Pardalos,et al.  Efficient solutions for the far from most string problem , 2012, Ann. Oper. Res..

[18]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).