Molecular Phylogeny and Genetic Differentiation of the Tanakia himantegus Complex (Teleostei: Cyprinidae) in Taiwan and China

Molecular phylogeny and genetic differentiation of the Tanakia himantegus complex (Teleostei: Cyprinidae) in Taiwan and China. Zoological Studies 48(6): 823-834. Tanakia himantegus himantegus is a subspecies endemic to Taiwan (referred as the Taiwanese himantegus), while T. himantegus chii is distributed in both Taiwan (referred as the Taiwanese chii) and China (referred as the Chinese chii). We analyzed the complete cytochrome (Cyt) b DNA sequences of 61 specimens of the T. himantegus complex (including the Taiwanese chii, Chinese chii, and Taiwanese himantegus) to infer their phylogeny, genetic differentiation, and historical demography. Both Bayesian and maximum-likelihood trees showed that the Taiwanese chii, Chinese chii, and Taiwanese himantegus are 3 monophyletic groups. Among them, the Taiwanese chii clustered with the Chinese chii. The average pairwise genetic distance (HKY + G) between the Taiwanese chii and Chinese chii was 6.8%, which is smaller than 10.8% (distance between the Taiwanese chii and Taiwanese himantegus) and 11.8% (distance between the Chinese chii and Taiwanese himantegus). The results suggest that the Taiwanese chii is phylogenetically closer to the Chinese chii than to the Taiwanese himantegus. Sequence analyses showed that the Taiwanese chii has smaller genetic diversity (h = 0.771, π = 0.0014) than the Chinese chii (h = 0.927, π = 0.0087) and Taiwanese himantegus (h = 0.879, π = 0.0066). The AMOVA revealed that about 92.8% of the genetic variance among sequences can be explained by differences among the 3 monophyletic groups (Taiwanese chii, Chinese chii, and Taiwanese himantegus). A unimodal mismatch distribution with a positively skewed distribution for the Taiwanese chii suggests that it has recently experienced sudden population expansions. Bimodal or ragged mismatch distributions for the Chinese chii and Taiwanese himantegus suggest that they are either admixtures of 2 expanding populations or stable populations. The origin of the Taiwanese chii is discussed based on the geographical history of Taiwan, records of fish collection, and phylogenetic analyses. http://zoolstud.sinica.edu.tw/Journals/48.6/823.pdf.

[1]  X. Gu,et al.  Phylogenetic position of the enigmatic genus Psilorhynchus (Ostariophysi: Cypriniformes): evidence from the mitochondrial genome. , 2008, Molecular phylogenetics and evolution.

[2]  M. Milinkovitch,et al.  Estimating population parameters using the structured serial coalescent with Bayesian MCMC inference when some demes are hidden. , 2007 .

[3]  Katsutoshi Watanabe,et al.  Mitochondrial phylogeny reveals the artificial introduction of the pale chub Zacco platypus (Cyprinidae) in Taiwan , 2006, Ichthyological Research.

[4]  M. Miya,et al.  Mitogenomic Evolution and Interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): The First Evidence Toward Resolution of Higher-Level Relationships of the World’s Largest Freshwater Fish Clade Based on 59 Whole Mitogenome Sequences , 2006, Journal of Molecular Evolution.

[5]  Marjorie Caygill,et al.  London, British Museum , 2006 .

[6]  R. Arai,et al.  Karyotypes of Three Tanakia Bitterlings (Pisces, Cyprinidae) from East Asia , 2006 .

[7]  Chang-Bae Kim,et al.  The complete mitogenome of Rhodeus uyekii (Cypriniformes, Cyprinidae) , 2006, DNA sequence : the journal of DNA sequencing and mapping.

[8]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[9]  R. Caniglia,et al.  Molecular phylogeny of two lineages of Leuciscinae cyprinids (Telestes and Scardinius) from the peri-Mediterranean area based on cytochrome b data. , 2004, Molecular phylogenetics and evolution.

[10]  M. M. Coelho,et al.  Phylogenetic structure of Zacco platypus (Teleostei, Cyprinidae) populations on the upper and middle Chang Jiang (=Yangtze) drainage inferred from cytochrome b sequences. , 2004, Molecular phylogenetics and evolution.

[11]  M. Reichard,et al.  The reproductive ecology of the European bitterling (Rhodeus sericeus) , 2004 .

[12]  Xavier Messeguer,et al.  DnaSP, DNA polymorphism analyses by the coalescent and other methods , 2003, Bioinform..

[13]  R. Arai,et al.  Gross morphology and evolution of the lateral line system and infraorbital bones in bitterlings (Cyprinidae, Acheilognathinae), with an overview of the lateral line system in the family Cyprinidae , 2003 .

[14]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[15]  X. Xia,et al.  DAMBE: software package for data analysis in molecular biology and evolution. , 2001, The Journal of heredity.

[16]  A. Chemenda,et al.  New results from physical modelling of arc–continent collision in Taiwan: evolutionary model , 2001 .

[17]  A. Machordom,et al.  Evidence of a cenozoic Betic-Kabilian connection based on freshwater fish phylogeography (Luciobarbus, Cyprinidae). , 2001, Molecular phylogenetics and evolution.

[18]  K. Crandall,et al.  TCS: a computer program to estimate gene genealogies , 2000, Molecular ecology.

[19]  R. Zardoya,et al.  Molecular Evidence on the Evolutionary and Biogeographical Patterns of European Cyprinids , 1999, Journal of Molecular Evolution.

[20]  Y. Fu,et al.  Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. , 1997, Genetics.

[21]  G. Pesole,et al.  Evolutionary analysis of cytochrome b sequences in some perciformes: Evidence for a slower rate of evolution than in mammals , 1994, Journal of Molecular Evolution.

[22]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[23]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[24]  C. Sing,et al.  A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. , 1992, Genetics.

[25]  H. Harpending,et al.  Population growth makes waves in the distribution of pairwise genetic differences. , 1992, Molecular biology and evolution.

[26]  Wen-Hsiung Li,et al.  Fundamentals of molecular evolution , 1990 .

[27]  Louis S. Teng Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan , 1990 .

[28]  池田 勝彦 産業構造の evolutionary analysis , 1965 .

[29]  K. Voigt,et al.  Molecular identification of fungi. , 2010 .

[30]  Y. Shao,et al.  Molecular Identification of Two Sibling Species of Puntius in Taiwan , 2006 .

[31]  陳 義雄,et al.  臺灣淡水魚類原色圖鑑 = A photographic guide to the inlandwater fishes of Taiwan , 2005 .

[32]  J. Durand,et al.  Phylogeny and biogeography of the family Cyprinidae in the Middle East inferred from cytochrome b DNA- evolutionary significance of this region. , 2002, Molecular phylogenetics and evolution.

[33]  R. Arai,et al.  Phylogenetic relationships of bitterlings based on mitochondrial 12S ribosomal DNA sequences , 2001 .

[34]  Didier Raoult,et al.  Molecular identification by , 2000 .

[35]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[36]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[37]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[38]  J F Webb,et al.  Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. , 1989, Brain, behavior and evolution.

[39]  R. Arai Acheilognathus melanogaster, a senior synonym of A moriokae, with a revision of the genera of the subfamily Acheilogathinae (Cypriniformes, Cyprinidae) , 1988 .