A geometric approach to periodically forced dynamical systems in presence of a separatrix

We consider the periodic boundary value problem for the non-autonomous scalar second-order equation x+F(x,x)=e(t), with e(·) a continuous and T-periodic forcing term. Using a continuation theorem adapted from Capietto et al. (Trans. Amer. Math. Soc. 329 (1992) 41–72), we propose some new conditions for the existence of T-periodic solutions to the forced equation in terms of the dynamical properties of the trajectories of the associated autonomous equation x+F(x,x)=0. Special emphasis will be addressed to the study of the case in which the presence of an unbounded separatrix for the autonomous system in the phase-plane allows to obtain a priori bounds for the T-periodic solutions of the homotopic equation x+F(x,x)=λe(t).

[1]  J. Mawhin,et al.  Continuation theorems for periodic perturbations of autonomous systems , 1992 .

[2]  G. Sell Periodic solutions and asymptotic stability , 1966 .

[3]  G. Villari,et al.  On the qualitative behaviour of solutions of Liénard equation , 1987 .

[4]  P. Omari,et al.  On a continuation lemma for the study of a certain planar system with applications to liénard and rayleigh equations , 1988 .

[5]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[6]  Solomon Lefschetz,et al.  Differential Equations: Geometric Theory , 1958 .

[7]  M. A. Krasnoselʹskii The operator of translation along the trajectories of differential equations , 1968 .

[8]  Jean Mawhin,et al.  Continuation theorems and periodic solutions of ordinary differential equations , 1995 .

[9]  Jitsuro Sugie,et al.  Classification of Global Phase Portraits of a System of Liénard Type , 1995 .

[10]  G. Villari Contributi allo studio dell'esistenza di soluzioni periodiche per i sistemi di equazioni differenziali ordinarie , 1965 .

[11]  J. Mawhin Existence of Periodic Solutions for Higher-Order Differential Systems that Are Not of Class D , 1970 .

[12]  J. Mawhin Topological degree methods in nonlinear boundary value problems , 1979 .

[13]  V. A. Pliss Nonlocal Problems of the Theory of Oscillations , 1966 .

[14]  F. Zanolin,et al.  A continuation theorem with applications to periodically forced Liénard equations in the presence of a separatrix , 2002 .

[15]  J. Mawhin Boundary value problems for nonlinear second-order vector differential equations , 1974 .

[16]  T. Hara,et al.  On the global center of generalized Liénard equation and its application to stability problems. II , 1985 .

[17]  R. Kannan,et al.  Solutions in the large of Liénard systems with forcing terms , 1976 .

[18]  G. Villari,et al.  Limit cycles and bifurcation from a separatrix for a polynomial Lienard system in the plane. , 1997 .

[19]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[20]  N. Rouche,et al.  Équations différentielles ordinaires , 1973 .

[21]  R. Gaines,et al.  Coincidence Degree and Nonlinear Differential Equations , 1977 .

[22]  Roberto Conti,et al.  Non-linear differential equations , 1966 .

[23]  Z. Opial Sur un théorème de A. Filippoff , 1958 .

[24]  F. Zanolin,et al.  On a dynamical system in the Liénard plane. Necessary and sufficient conditions for the intersection with the vertical isocline and applications , 1990 .

[25]  P. Hartman Ordinary Differential Equations , 1965 .

[26]  R. Reissing,et al.  Qualitative theorie Nichtlinearer Differentialgleichungen , 1963 .

[27]  F. Zanolin,et al.  Periodic solutions of the Liénard equation with one-sided growth restrictions , 1987 .

[28]  Jitsuro Sugie,et al.  When all trajectories in the Liénard plane cross the vertical isocline? , 1995 .