Engineering and performance of a contactless linear slider based on superconducting magnetic levitation for precision positioning

Abstract In this paper, a contactless linear slider for precision positioning able to operate in cryogenic environments is presented. The device, based on superconducting magnetic levitation, does not present contact between the slider (composed of a permanent magnet) and the guideline (made of high-temperature superconducting disks) of the mechanism, thereby avoiding any tribological problems. Moreover, the slider is self-stable and the superconductors provide inherent guidance to the permanent magnet in the sliding DoF due to the high translational symmetry of the magnetic field that leads to low power consumption. A sub-micrometre resolution and a symmetric stroke over ±9 mm have been demonstrated at cryogenic temperatures. In addition, a set of design rules for this kind of mechanism has been proposed and experimentally validated. These rules demonstrate that the performance of the device can be tuned just by modifying some geometrical parameters of the mechanism. In this way, the sensitivity and stiffness, resolution, angular run outs and power consumption can be adjusted for different applications and requirements.

[1]  Javier Serrano-Tellez,et al.  Experience on a cryogenic linear mechanism based on superconducting levitation , 2012, Other Conferences.

[2]  Jose-Luis Perez-Diaz,et al.  Non-contact linear slider for cryogenic environment , 2012 .

[3]  Yoon Su Baek,et al.  Development of a novel maglev positioner with self-stabilizing property , 2002 .

[4]  J. Ekin,et al.  Experimental techniques for low-temperature measurements , 2006 .

[5]  Chong-Won Lee,et al.  Design and control of active magnetic bearing system with Lorentz force-type axial actuator , 2006 .

[6]  J. H. Makaliwe,et al.  Manipulation of nanoscale components with the AFM: principles and applications , 2001, Proceedings of the 2001 1st IEEE Conference on Nanotechnology. IEEE-NANO 2001 (Cat. No.01EX516).

[7]  G. D. Gamulya,et al.  Low temperature tribology at the B. Verkin Institute for Low Temperature Physics & Engineering (historical review) , 2001 .

[8]  Jose-Luis Perez-Diaz,et al.  Flip effect in the orientation of a magnet levitating over a superconducting torus in the Meissner state , 2011 .

[9]  H. Fujita,et al.  Position feedback control using magneto impedance sensors on conveyor with superconducting magnetic levitation , 2009 .

[10]  O. Sosnicki,et al.  Piezomechatronic-based systems in aircraft, space, and defense applications , 2009, Defense + Commercial Sensing.

[11]  Jose-Luis Perez-Diaz,et al.  Alignment effect between a magnet over a superconductor cylinder in the Meissner state , 2011 .

[12]  J. Pérez-Díaz,et al.  Local model for magnet–superconductor mechanical interaction: Experimental verification , 2011 .

[13]  Jie Gu,et al.  Six-axis nanopositioning device with precision magnetic levitation technology , 2004, IEEE/ASME Transactions on Mechatronics.

[14]  Yonghong Tan,et al.  Nonlinear Modeling and Decoupling Control of XY Micropositioning Stages With Piezoelectric Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[15]  Hiroyuki Fujita,et al.  Precise positioning of a micro conveyor based on superconducting magnetic levitation , 1997, 1997 International Symposium on Micromechanics and Human Science (Cat. No.97TH8311).

[16]  Paulo J. Costa Branco,et al.  Design and Experiment of a New Maglev Design Using Zero-Field-Cooled YBCO Superconductors , 2012, IEEE Transactions on Industrial Electronics.

[17]  V. ARKADIEV,et al.  A Floating Magnet , 1947, Nature.

[18]  Jose-Luis Perez-Diaz,et al.  Tailoring of the flip effect in the orientation of a magnet levitating over a superconducting torus: Geometrical dependencies , 2011 .

[19]  L. Bromberg,et al.  Precision cryogenic magnetostrictive actuator using a persistent high TC magnet , 2000 .

[20]  John R. Hull,et al.  TOPICAL REVIEW: Superconducting bearings , 2000 .

[21]  A. Hauser,et al.  Calculation of superconducting magnetic bearings using a commercial FE-program (ANSYS) , 1997 .

[22]  Garnett C. Horner A Cryogenic Magnetostrictive Actuator Using a Persistent High Temperature Superconducting Magnet , 2000 .

[23]  Richard M. Stephan,et al.  Levitation force and stability of superconducting linear bearings using NdFeB and ferrite magnets , 2003 .

[24]  Won-jong Kim,et al.  Multiaxis Maglev Positioner With Nanometer Resolution Over Extended Travel Range , 2007 .

[25]  J. Pérez-Díaz,et al.  Interpretation of the method of images in estimating superconducting levitation , 2007 .

[26]  E. Pardo,et al.  Enhanced stability by field cooling in superconducting levitation with translational symmetry , 2007 .

[27]  Yoon Keun Kwak,et al.  Contactless magnetically levitated silicon wafer transport system , 1996 .

[28]  Yoon Su Baek,et al.  Precision stage using a non-contact planar actuator based on magnetic suspension technology , 2003 .

[29]  Mao-Hsiung Chiang,et al.  Large stroke and high precision pneumatic–piezoelectric hybrid positioning control using adaptive discrete variable structure control , 2005 .

[30]  Zdeněk Hurák,et al.  Hybrid charge control for stick–slip piezoelectric actuators , 2011 .

[31]  I.J. Busch-Vishniac Micro-automating semiconductor fabrication , 1991, IEEE Circuits and Devices Magazine.

[32]  C. Navau,et al.  Vertical force, magnetic stiffness and damping for levitating type-II superconductors , 1996 .

[33]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[34]  S. Earnshaw On the Nature of the Molecular Forces which Regulate the Constitution of the Luminiferous Ether , .

[35]  Pablo Estevez,et al.  6-DoF miniature maglev positioning stage for application in haptic micro-manipulation , 2012 .

[36]  Tino Hausotte,et al.  New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes , 2007 .

[37]  Stephen M. Walley,et al.  Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar , 2004 .

[38]  Musa Jouaneh,et al.  Design and characterization of a low-profile micropositioning stage , 1996 .

[39]  Haralampos Pozidis,et al.  High-bandwidth nanopositioner with magnetoresistance based position sensing , 2012 .

[41]  Evangelos S. Eleftheriou Nanopositioning for Storage Applications , 2011 .