Preparation and electrochemical characterization of spinel type Fe–Co3O4 thin film electrodes in alkaline medium

[1]  S. Trasatti Physical electrochemistry of ceramic oxides , 2010 .

[2]  S. Trasatti,et al.  Effect of composition on the surface and electrocatalytic properties of Ti/IrOx+RhOx electrodes: H2 evolution from acidic solution , 2005 .

[3]  M. H. Mendonça,et al.  Preparation and characterisation of spinel type cobalt and rhodium oxide coatings on titanium , 2005 .

[4]  Ning Li,et al.  Anodically electrodeposited Co+Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media , 2004 .

[5]  Yichun Liu,et al.  Fabrication of NiCo2O4 nanofibers by electrospinning , 2004 .

[6]  M. H. Mendonça,et al.  Physicochemical and electrocatalytic properties of Li-Co3O4 anodes prepared by chemical spray pyrolysis for application in alkaline water electrolysis , 2004 .

[7]  S. Real,et al.  Electrochemical characterization of porous nickel–cobalt oxide electrodes , 2004 .

[8]  Yongsheng Han,et al.  Effect of precipitant on preparation of Ni–Co spinel oxide by coprecipitation method , 2004 .

[9]  A. Fujishima,et al.  Electrochemical behavior of cobalt oxide films deposited at conductive diamond electrodes , 2003 .

[10]  Ju-tang Sun,et al.  Synthesis and electrochemical performance of nanosized Co3O4 , 2003 .

[11]  M. H. Mendonça,et al.  Effect of the partial replacement of Fe by Ni and/or Mn on the electrocatalytic activity for oxygen evolution of the CoFe2O4 spinel oxide electrode , 2002 .

[12]  J. Singh,et al.  Electrocatalytic properties of new active ternary ferrite film anodes for O2 evolution in alkaline medium , 2002 .

[13]  J. Boodts,et al.  Electrochemical impedance spectroscopic (EIS) investigation of the deactivation mechanism, surface and electrocatalytic properties of Ti/RuO2(x)+Co3O4(1−x) electrodes , 2002 .

[14]  A. Kibria,et al.  Electrochemical studies of a nickel–copper electrode for the oxygen evolution reaction (OER) , 2002 .

[15]  Naveen Singh,et al.  Sol–gel-derived spinel Co3O4 films and oxygen evolution: Part II. Optimization of preparation conditions and influence of the nature of the metal salt precursor , 2002 .

[16]  Y. Qian,et al.  Moderate temperature synthesis of nanocrystalline Co3O4 via gel hydrothermal oxidation , 2002 .

[17]  J. Boodts,et al.  Determination of the morphology factor of oxide layers , 2001 .

[18]  V. Birss,et al.  Structural and compositional properties of sol-gel formed Ni, Co and Ni-Co oxide films , 2001 .

[19]  J. Schoonman,et al.  The preparation of NiCo2O4 films by electrostatic spray deposition , 2001 .

[20]  A. Tavares,et al.  Electrochemical study of spinel oxide systems with nominal compositions Ni1−xCuxCo2O4 and NiCo2−yCuyO4 , 2001 .

[21]  B. Orel,et al.  Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol–gel route , 2000 .

[22]  A. Barbucci,et al.  Oxygen evolution on Co3O4 and Li-doped Co3O4 coated electrodes in an alkaline solution , 1999 .

[23]  P. Patil Versatility of chemical spray pyrolysis technique , 1999 .

[24]  A. Tavares,et al.  Effect of the partial replacement of Ni or Co by Cu on the electrocatalytic activity of the NiCo2O4 spinel oxide , 1999 .

[25]  S. Ardizzone,et al.  Surface characterization of Co3O4 electrodes prepared by the sol-gel method , 1997 .

[26]  John R. Owen,et al.  Electrochemistry of novel materials , 1997 .

[27]  J. Rehspringer,et al.  High Specific Surface Area Nickel Mixed Oxide Powders LaNiO3 (Perovskite) and NiCo2O4 (Spinel) via Sol-Gel Type Routes for Oxygen Electrocatalysis in Alkaline Media , 1995 .

[28]  Ravindra Singh,et al.  Electrochemical Studies on Protective Thin Co3 O 4 and NiCo2 O 4 Films Prepared on Titanium by Spray Pyrolysis for Oxygen Evolution , 1990 .

[29]  J. L. Gautier,et al.  Thin films of Co3O4 and NiCo2O4 obtained by the method of chemical spray pyrolysis for electrocatalysis III. The electrocatalysis of oxygen evolution , 1990 .

[30]  S. Trasatti,et al.  Hydrogen evolution on iridium oxide cathodes , 1989 .

[31]  S. Trasatti,et al.  Electrochemical surface properties of Co3O4 electrodes , 1987 .

[32]  J. Bockris,et al.  Electrodes of conductive metallic oxides, Part A : edited by S. Trasatti, Elsevier, Amsterdam, 1980, $76.75, 366 pages. , 1983 .

[33]  J. Bockris,et al.  Mechanism of oxygen evolution on perovskites , 1983 .

[34]  C. Iwakura,et al.  The anodic evolution of oxygen on Co3O4 film electrodes in alkaline solutions , 1981 .

[35]  S. Trasatti Electrodes of Conductive Metallic Oxides , 1981 .

[36]  A. Barbucci,et al.  NICKEL–COBALT oxide-coated electrodes: influence of the preparation technique on oxygen evolution reaction (OER) in an alkaline solution , 1999 .

[37]  P. Ross,et al.  The Electrochemistry of novel materials , 1994 .

[38]  S. Levine,et al.  Theory of the differential capacity of the oxide/aqueous electrolyte interface , 1971 .