Geometric Modeling with Algebraic Surfaces

Research in geometric modeling is currently engaged in increasing the geometric coverage to allow modeling operations on arbitrary algebraic surfaces. Operations on models often include Boolean set operations (intersection, union), sweeps and convolutions, convex bull computa· tions, primitive decomposition, surface and volume mesh generatioD, calculation of surface area and volumetric properties, etc. From these arise a number of basic problems for which effective and robust solutions need to be obtained. 'We need to devise methods for unambiguous algebraic surface model representations, for converting between alternate internal algebraic curve and surface representations such as tbe implicit and the parametric, for intersecting algebraic surfaces and topologically analyzing the inherent singularities of their high degree curve components, for soning points along algebraic curves, for minimum distance and common tangent computations between algebraic curves and surfaces, for containment classifications of algebriac curve segments and algebraic surface patches, etc. Computationally efficient algorithms for all these problems necessitate combining results from algorithmic algebraic geometry, computer algebra, computational geometry and numerical approximation theory. In tbis paper we present and discuss various such algorithms and approaches for geometric models with algebraic surfaces. ·Supported in part by NSF Grant MIP 85.:H356, ARO Contract DAAG29-85-C0018 under Cornell MSI and ONR contract NOOOl·l-S8-K·0402. Invit.ed P~per at "The Mathematics of Surfaces III", O:dord University, Oxford, UK, September 19·21,1988.

[1]  M. Karasick On the representation and manipulation of rigid solids , 1989 .

[2]  Kokichi Sugihara,et al.  On Finite-Precision Representations of Geometric Objects , 1989, J. Comput. Syst. Sci..

[3]  George Salmon Lessons introductory to the modern higher algebra , 1885 .

[4]  Joe D. Warren Blending quadric surfaces with quadric and cubic surfaces , 1987, SCG '87.

[5]  Hlawka Einführung in die algebraische Geometrie , 1941 .

[6]  Robert E. Tarjan,et al.  An O(n log log n)-Time Algorithm for Triangulating a Simple Polygon , 1988, SIAM J. Comput..

[7]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[8]  Rida T. Farouki,et al.  On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..

[9]  James Renegar,et al.  On the worst-case arithmetic complexity of approximating zeros of polynomials , 1987, J. Complex..

[10]  Tomás Lozano-Pérez,et al.  A Geometric Modeling System for Automated Mechanical Assembly , 1980, IBM J. Res. Dev..

[11]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[12]  W. J. Gordon,et al.  B-SPLINE CURVES AND SURFACES , 1974 .

[13]  J. Schwartz,et al.  Precise Implementation of Cad Primitives using Rational Parameterizations of Standard Surfaces , 1984 .

[14]  Chandrajit L. Bajaj,et al.  Compliant motion planning with geometric models , 1987, SCG '87.

[15]  Leonidas J. Guibas,et al.  Computing convolutions by reciprocal search , 1986, SCG '86.

[16]  C. H. Sisam,et al.  Analytic Geometry Of Space , .

[17]  Joe Warren,et al.  On the Applications of Multi-Equational Resultants , 1988 .

[18]  Ron Goldman,et al.  Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..

[19]  Chandrajit L. Bajaj,et al.  Algorithms for Planar Geometric Models , 1988, ICALP.

[20]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[21]  James E. pLebensohn Geometry and the Imagination , 1952 .

[22]  Rida T. Farouki,et al.  Computational issues in solid boundary evaluation , 1988, Inf. Sci..

[23]  R. J. Walker Algebraic curves , 1950 .

[24]  Chandrajit L. Bajaj,et al.  Generation of configuration space obstacles: the case of a moving sphere , 1988, IEEE J. Robotics Autom..

[25]  Alejandro A. Schäffer,et al.  Convex Hulls of Piecewise-Smooth Jordan Curves , 1987, J. Algorithms.

[26]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[27]  Henderson,et al.  The Twenty-Seven Lines upon the Cubic Surface , 1912 .

[28]  Robert F. Sproull,et al.  Principles in interactive computer graphics , 1973 .

[29]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[30]  Daniel Lazard,et al.  Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..

[31]  H. Voelcker,et al.  Solid modeling: current status and research directions , 1983, IEEE Computer Graphics and Applications.

[32]  James Renegar On the Worst-Case Arithmetic Complexity of Approximating Zeros of Systems of Polynomials , 1989, SIAM J. Comput..

[33]  G. E. Collins,et al.  Quantifier Elimination for Real Closed Fields: A Guide to the Literature , 1983 .

[34]  Chandrajit L. Bajaj,et al.  Automatic parameterization of rational curves and surfaces III: Algebraic plane curves , 1988, Comput. Aided Geom. Des..

[35]  C. Hoffmann Algebraic curves , 1988 .

[36]  Jack Sklansky,et al.  Finding the convex hull of a simple polygon , 1982, Pattern Recognit. Lett..

[37]  W. Gellert,et al.  Analytic geometry of space , 1975 .

[38]  Rida T. Farouki,et al.  Exact offset procedures for simple solids , 1985, Comput. Aided Geom. Des..

[39]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .

[40]  A.A.G. Requicha,et al.  Boolean operations in solid modeling: Boundary evaluation and merging algorithms , 1985, Proceedings of the IEEE.

[41]  Chandrajit L. Bajaj,et al.  Computations with Algebraic Curves , 1988, ISSAC.

[42]  Ron Goldman,et al.  Vector elimination: A technique for the implicitization, inversion, and intersection of planar parametric rational polynomial curves , 1984, Comput. Aided Geom. Des..

[43]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[44]  Rida T. Farouki,et al.  Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..

[45]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[46]  Aristides A. G. Requicha,et al.  Representaiton of Rigid Solid Objects , 1980, CAD Advanced Course.

[47]  Richard R. Patterson,et al.  Parametric cubics as algebraic curves , 1988, Comput. Aided Geom. Des..

[48]  Archibald Henderson,et al.  The Twenty-Seven Lines upon the Cubic Surface , 1912, Nature.

[49]  J. Hopcroft,et al.  Quadratic blending surfaces , 1985 .

[50]  Joe D. Warren,et al.  On computing the intersection of a pair of algebraic surfaces , 1989, Comput. Aided Geom. Des..

[51]  John E. Hopcroft,et al.  Geometric ambiguities in boundary representations , 1986 .

[52]  Chandrajit L. Bajaj,et al.  Tracing surface intersections , 1988, Comput. Aided Geom. Des..

[53]  George E. Collins,et al.  The Calculation of Multivariate Polynomial Resultants , 1971, JACM.

[54]  Chandrajit L. Bajaj Mathematical techniques in solid modeling , 1988, [Proceedings] 1988 International Conference on Computer Integrated Manufacturing.

[55]  John F. Canny,et al.  Generalized Characteristic Polynomials , 1988, ISSAC.

[56]  Scott McCallum,et al.  A Polynomial-Time Algorithm for the Topological Type of a Real Algebraic Curve , 1984, J. Symb. Comput..

[57]  S. Abhyankar,et al.  Automatic Rational Parameterization of Curves and Surfaces II: Cubics and Cubicoids , 1986 .

[58]  John K. Johnstone,et al.  Sorting Points Along an Algebraic Curve , 1990, SIAM J. Comput..

[59]  Wayne Tiller,et al.  The Cayley method in computer aided geometric design , 1984, Comput. Aided Geom. Des..

[60]  J. E. Rowe The equation of a rational plane curve derived from its parametric equations (Second paper) , 1917 .

[61]  R. Seidel A Method for Proving Lower Bounds for Certain Geometric Problems , 1984 .

[62]  Wayne Tiller,et al.  Applications of power series in computational geometry , 1986 .

[63]  M. A. Jenkins,et al.  A Three-Stage Algorithm for Real Polynomials Using Quadratic Iteration , 1970 .

[64]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[65]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..

[66]  C. Bajaj,et al.  Face area evaluation algorithm for solids , 1988 .

[67]  Aristides A. G. Requicha,et al.  Offsetting operations in solid modelling , 1986, Comput. Aided Geom. Des..

[68]  Joshua Z. Levin Mathematical models for determining the intersections of quadric surfaces , 1979 .

[69]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[70]  S. Abhyankar Historical Ramblings in Algebraic Geometry and Related Algebra , 1976 .

[71]  Thomas W. Sederberg Piecewise algebraic surface patches , 1985, Comput. Aided Geom. Des..

[72]  W. J. Gordon,et al.  Bernstein-Bézier Methods for the Computer-Aided Design of Free-Form Curves and Surfaces , 1974, JACM.

[73]  Kevin Weiler Topological Structures for Geometric Modeling , 1986 .

[74]  Virgil Snyder Selected Topics in Algebraic Geometry , 1970 .

[75]  George Salmon A Treatise on the Analytic Geometry of Three Dimensions , 1912 .

[76]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[77]  S. Abhyankar Algebraic Space Curves , 1971 .