End-of-life disposal of high elliptical orbit missions: The case of INTEGRAL

Abstract Nowadays there is international consensus that space activities must be managed to minimize debris generation and risk. The paper presents a method for the end-of-life (EoL) disposal of spacecraft in high elliptical orbits (HEO). The time evolution of HEO is strongly affected by Earth’s oblateness and luni-solar perturbation, and this can cause in the long-term to extended interferences with low Earth orbit (LEO) protected region and uncontrolled Earth re-entry. An EoL disposal concept that exploits the effect of orbital perturbations to reduce the disposal cost is presented. The problem is formulated as a multiobjective optimization problem, which is solved with an evolutionary algorithm. To explore at the best the search space a semi-analytical orbit propagator, which allows the propagation of the orbit motion for 100 years in few seconds, is adopted. The EoL disposal of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) mission is used as a practical test-case to show the effectiveness of the proposed methodology.

[1]  Jean H. Meeus,et al.  Astronomical Algorithms , 1991 .

[2]  J. Chapront,et al.  ELP 2000-85: a semi-analytical lunar ephemeris adequate for historical times , 1988 .

[3]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[4]  Christoph Winkler INTEGRAL: status of the mission - after 10 years , 2012 .

[5]  C. Chao,et al.  Applied Orbit Perturbation and Maintenance , 2005 .

[6]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[7]  M. Kassebom,et al.  End-Of-Life De-Orbiting Strategies for Satellites , 2003 .

[8]  J. Chapront,et al.  The lunar theory ELP revisited. Introduction of new planetary perturbations , 2003 .

[9]  P. Gondoin,et al.  XMM-Newton observatory. I. The spacecraft and operations , 2001 .

[10]  D. Kessler,et al.  Collision frequency of artificial satellites: The creation of a debris belt , 1978 .

[11]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .

[12]  H. Klinkrad,et al.  The ESA space debris mitigation handbook , 1997 .

[13]  Stanley Q. Kidder,et al.  On the use of satellites in Molniya orbits for meteorological observation of middle and high latitudes , 1990 .

[14]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[15]  Kalyanmoy Deb,et al.  Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design , 1999 .

[16]  A. V. Ditrikh,et al.  Orbit design for launching INTEGRAL on the Proton/Block-DM launcher , 2003 .

[17]  Roger P. Denlinger,et al.  A robust method to forecast volcanic ash clouds , 2012 .

[18]  H. Klinkrad,et al.  The ESA Space Debris Mitigation Handbook 2002 , 2002 .

[19]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .

[20]  Michèle Lavagna,et al.  Multidisciplinary optimization of aerocapture maneuvers , 2007 .

[21]  C. Cassi,et al.  The INTEGRAL spacecraft - in-orbit performance , 2003 .

[22]  H. Klinkrad Space Debris: Models and Risk Analysis , 2006 .

[23]  H. Lewis,et al.  End-of-life disposal concepts for libration point and highly elliptical orbit missions , 2014 .

[24]  Paul J. Cefola,et al.  On the third-body perturbations of high-altitude orbits , 2012 .

[25]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[26]  Martin C. Weisskopf,et al.  Chandra X-ray Observatory (CXO): overview , 1999, Astronomical Telescopes and Instrumentation.

[27]  F. Angrilli,et al.  The Inter-Agency Space Debris Coordination Committee (iadc) Protection Manual , 2005 .