An assessment of some solvers for saddle point problems emerging from the incompressible Navier–Stokes equations

Abstract Efficient incompressible flow simulations, using inf–sup stable pairs of finite element spaces, require the application of efficient solvers for the arising linear saddle point problems. This paper presents an assessment of different solvers: the sparse direct solver UMFPACK, the flexible GMRES (FGMRES) method with different coupled multigrid preconditioners, and FGMRES with Least Squares Commutator (LSC) preconditioners. The assessment is performed for steady-state and time-dependent flows around cylinders in 2d and 3d. Several pairs of inf–sup stable finite element spaces with second order velocity and first order pressure are used. It turns out that for the steady-state problems often FGMRES with an appropriate multigrid preconditioner was the most efficient method on finer grids. For the time-dependent problems, FGMRES with LSC preconditioners that use an inexact iterative solution of the velocity subproblem worked best for smaller time steps.

[1]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[2]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[3]  Segal,et al.  Preconditioners for Incompressible Navier-Stokes Solvers , 2010 .

[4]  Volker John,et al.  Continuous Crystallization in a Helically Coiled Flow Tube: Analysis of Flow Field, Residence Time Behavior, and Crystal Growth , 2017 .

[5]  M. Benzi,et al.  INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .

[6]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[7]  John N. Shadid,et al.  Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..

[8]  Gunar Matthies,et al.  An Object Oriented Parallel Finite Element Scheme for Computations of PDEs: Design and Implementation , 2016, 2016 IEEE 23rd International Conference on High Performance Computing Workshops (HiPCW).

[9]  Howard C. Elman,et al.  BOUNDARY CONDITIONS IN APPROXIMATE COMMUTATOR PRECONDITIONERS FOR THE NAVIER-STOKES EQUATIONS ∗ , 2009 .

[10]  Maxim A. Olshanskii,et al.  Pressure Schur Complement Preconditioners for the Discrete Oseen Problem , 2007, SIAM J. Sci. Comput..

[11]  Naveed Ahmed,et al.  ParMooN - A modernized program package based on mapped finite elements , 2016, Comput. Math. Appl..

[12]  Zhen Wang,et al.  Analysis of Augmented Lagrangian-Based Preconditioners for the Steady Incompressible Navier-Stokes Equations , 2011, SIAM J. Sci. Comput..

[13]  Maxim A. Olshanskii,et al.  Field-of-Values Convergence Analysis of Augmented Lagrangian Preconditioners for the Linearized Navier-Stokes Problem , 2011, SIAM J. Numer. Anal..

[14]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[15]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[16]  John N. Shadid,et al.  Least Squares Preconditioners for Stabilized Discretizations of the Navier-Stokes Equations , 2007, SIAM J. Sci. Comput..

[17]  Martin Kronbichler,et al.  A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow , 2016, J. Comput. Phys..

[18]  Volker John,et al.  A variational multiscale method for turbulent flow simulation with adaptive large scale space , 2010, J. Comput. Phys..

[19]  Leo G. Rebholz,et al.  Preconditioning sparse grad-div/augmented Lagrangian stabilized saddle point systems , 2013, Comput. Vis. Sci..

[20]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[21]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[22]  Gunar Matthies,et al.  International Journal for Numerical Methods in Fluids Higher-order Finite Element Discretizations in a Benchmark Problem for Incompressible Flows , 2022 .

[23]  G. Rapin,et al.  Efficient augmented Lagrangian‐type preconditioning for the Oseen problem using Grad‐Div stabilization , 2013 .

[24]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[25]  Zhen Wang,et al.  A parallel implementation of the modified augmented Lagrangian preconditioner for the incompressible Navier–Stokes equations , 2012, Numerical Algorithms.

[26]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[27]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[28]  John N. Shadid,et al.  A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations , 2008, J. Comput. Phys..

[29]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[30]  S. Capizzano,et al.  On an augmented Lagrangian-based preconditioning of Oseen type problems , 2011 .

[31]  Barry F. Smith,et al.  PETSc Users Manual , 2019 .

[32]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[33]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[34]  Volker John,et al.  On the efficiency of linearization schemes and coupled multigrid methods in the simulation of a 3D flow around a cylinder , 2006 .

[35]  Ross Ingram,et al.  A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier-Stokes equations , 2013, Math. Comput..

[36]  Gunar Matthies,et al.  Non-Nested Multi-Level Solvers for Finite Element Discretisations of Mixed Problems , 2002, Computing.