PseudoAugment: Learning to Use Unlabeled Data for Data Augmentation in Point Clouds

[1]  Hang Zhao,et al.  Embracing Single Stride 3D Object Detector with Sparse Transformer , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Chandra Kambhamettu,et al.  PatchAugment: Local Neighborhood Augmentation in Point Cloud Classification , 2021, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).

[3]  Seong Jae Hwang,et al.  Point Cloud Augmentation with Weighted Local Transformations , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Cristian Sminchisescu,et al.  RSN: Range Sparse Net for Efficient, Accurate LiDAR 3D Object Detection , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Sen Wang,et al.  LiDAR-Aug: A General Rendering-based Augmentation Framework for 3D Object Detection , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Chi-Wing Fu,et al.  SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Xuan Xiong,et al.  RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  Dragomir Anguelov,et al.  Offboard 3D Object Detection from Point Cloud Sequences , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Jiquan Ngiam,et al.  Pseudo-labeling for Scalable 3D Object Detection , 2021, ArXiv.

[10]  Sangyoun Lee,et al.  Regularization Strategy for Point Cloud via Rigidly Mixed Sample , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Quoc V. Le,et al.  Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Leonidas J. Guibas,et al.  3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Nojun Kwak,et al.  Part-Aware Data Augmentation for 3D Object Detection in Point Cloud* , 2020, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[14]  Yu Wang,et al.  AFDet: Anchor Free One Stage 3D Object Detection , 2020, ArXiv.

[15]  Quoc V. Le,et al.  Rethinking Pre-training and Self-training , 2020, NeurIPS.

[16]  Maxwell D. Collins,et al.  Leveraging Semi-Supervised Learning in Video Sequences for Urban Scene Segmentation , 2020, ArXiv.

[17]  Dragomir Anguelov,et al.  Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection , 2020, CoRL.

[18]  Quoc V. Le,et al.  Improved Noisy Student Training for Automatic Speech Recognition , 2020, INTERSPEECH.

[19]  Han Zhang,et al.  A Simple Semi-Supervised Learning Framework for Object Detection , 2020, ArXiv.

[20]  Quoc V. Le,et al.  Improving 3D Object Detection through Progressive Population Based Augmentation , 2020, ECCV.

[21]  Xianzhi Li,et al.  PointAugment: An Auto-Augmentation Framework for Point Cloud Classification , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  David Berthelot,et al.  FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence , 2020, NeurIPS.

[23]  Xiaogang Wang,et al.  PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Dragomir Anguelov,et al.  Scalability in Perception for Autonomous Driving: Waymo Open Dataset , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  D. Ramanan,et al.  What You See is What You Get: Exploiting Visibility for 3D Object Detection , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Quoc V. Le,et al.  Self-Training With Noisy Student Improves ImageNet Classification , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Quoc V. Le,et al.  Randaugment: Practical automated data augmentation with a reduced search space , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[28]  Awni Y. Hannun,et al.  Self-Training for End-to-End Speech Recognition , 2019, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[29]  Qiang Xu,et al.  nuScenes: A Multimodal Dataset for Autonomous Driving , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Yin Zhou,et al.  End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds , 2019, CoRL.

[31]  Yin Zhou,et al.  StarNet: Targeted Computation for Object Detection in Point Clouds , 2019, ArXiv.

[32]  Simon Lucey,et al.  Argoverse: 3D Tracking and Forecasting With Rich Maps , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Ion Stoica,et al.  Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules , 2019, ICML.

[34]  David Berthelot,et al.  MixMatch: A Holistic Approach to Semi-Supervised Learning , 2019, NeurIPS.

[35]  Taesup Kim,et al.  Fast AutoAugment , 2019, NeurIPS.

[36]  Carlos Vallespi-Gonzalez,et al.  LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Jiong Yang,et al.  PointPillars: Fast Encoders for Object Detection From Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Xiaogang Wang,et al.  PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Bin Yang,et al.  HDNET: Exploiting HD Maps for 3D Object Detection , 2018, CoRL.

[40]  Bo Li,et al.  SECOND: Sparsely Embedded Convolutional Detection , 2018, Sensors.

[41]  Bin Yang,et al.  PIXOR: Real-time 3D Object Detection from Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[42]  Quoc V. Le,et al.  AutoAugment: Learning Augmentation Policies from Data , 2018, ArXiv.

[43]  M. Jorge Cardoso,et al.  Improving Data Augmentation for Medical Image Segmentation , 2018 .

[44]  Leonidas J. Guibas,et al.  Frustum PointNets for 3D Object Detection from RGB-D Data , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[45]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[46]  Hongyi Zhang,et al.  mixup: Beyond Empirical Risk Minimization , 2017, ICLR.

[47]  Max Jaderberg,et al.  Population Based Training of Neural Networks , 2017, ArXiv.

[48]  Christopher Ré,et al.  Learning to Compose Domain-Specific Transformations for Data Augmentation , 2017, NIPS.

[49]  Graham W. Taylor,et al.  Improved Regularization of Convolutional Neural Networks with Cutout , 2017, ArXiv.

[50]  Martial Hebert,et al.  Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[51]  Peter Corcoran,et al.  Smart Augmentation Learning an Optimal Data Augmentation Strategy , 2017, IEEE Access.

[52]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Yunchao Wei,et al.  STC: A Simple to Complex Framework for Weakly-Supervised Semantic Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[56]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[57]  Kensuke Yokoi,et al.  APAC: Augmented PAttern Classification with Neural Networks , 2015, ArXiv.

[58]  Ronald M. Summers,et al.  Anatomy-specific classification of medical images using deep convolutional nets , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[59]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[60]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[61]  Dong-Hyun Lee,et al.  Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks , 2013 .

[62]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[63]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[64]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[65]  Martial Hebert,et al.  Semi-Supervised Self-Training of Object Detection Models , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[66]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[67]  G. McLachlan Iterative Reclassification Procedure for Constructing An Asymptotically Optimal Rule of Allocation in Discriminant-Analysis , 1975 .