Theory and algorithms of an efficient fringe analysis technology for automatic measurement applications.

Some advances in fringe analysis technology for phase computing are presented. A full scheme for phase evaluation, applicable to automatic applications, is proposed. The proposal consists of: a fringe-pattern normalization method, Fourier fringe-normalized analysis, generalized phase-shifting processing for inhomogeneous nonlinear phase shifts and spatiotemporal visibility, and a phase-unwrapping method by a rounding-least-squares approach. The theoretical principles of each algorithm are given. Numerical examples and an experimental evaluation are presented.

[1]  J. C. Gutiérrez-García,et al.  Practical eight-frame algorithms for fringe projection profilometry. , 2013, Optics express.

[2]  Mohamed Afifi,et al.  Five-frame phase-shifting algorithm insensitive to diode laser power variation , 2001 .

[3]  Mamoru Mitsuishi,et al.  Design of phase shifting algorithms: fringe contrast maximum. , 2014, Optics express.

[4]  Matthew Harker,et al.  Least squares surface reconstruction from measured gradient fields , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Rigoberto Juarez-Salazar,et al.  Generalized phase-shifting algorithm for inhomogeneous phase shift and spatio-temporal fringe visibility variation. , 2014, Optics express.

[6]  Rigoberto Juarez-Salazar,et al.  Phase-unwrapping algorithm by a rounding-least-squares approach , 2014 .

[7]  Yongtian Wang,et al.  Optical design and testing: introduction. , 2015, Applied optics.

[8]  Wen Zhou,et al.  Novel method for quantifying the cell size of marine phytoplankton based on optical measurements. , 2014, Optics express.

[9]  Y Takeda,et al.  Random phase shifters for fourier transformed holograms. , 1972, Applied optics.

[10]  Louis A. Romero,et al.  Minimum Lp-norm two-dimensional phase unwrapping , 1996 .

[11]  Cruz Meneses-Fabian,et al.  Generalized phase-shifting interferometry by parameter estimation with the least squares method , 2013 .

[12]  Tao Zhang,et al.  Robust phase unwrapping algorithm based on least squares , 2014 .

[13]  Shimon Wdowinski,et al.  On the importance of path for phase unwrapping in synthetic aperture radar interferometry. , 2011, Applied optics.

[14]  Cruz Meneses-Fabian,et al.  Fourier normalized-fringe analysis by zero-order spectrum suppression using a parameter estimation approach , 2013 .

[15]  János Kornis Fringe Processing Methods for Adaptive Interferometry , 2014 .

[16]  José María Carazo,et al.  Fringe pattern denoising by image dimensionality reduction , 2013 .

[17]  José A. Gómez-Pedrero,et al.  Algorithm for fringe pattern normalization , 2001 .

[18]  Cruz Meneses-Fabian,et al.  Straightforward filtering to phase demodulation by a Fourier normalized-fringe approach , 2013, Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications.

[19]  Chi-Ching Chang,et al.  Numerical suppression of zero-order image in digital holography. , 2007, Optics express.

[20]  Fernando Perez Quintián,et al.  Ultrasonic Lamb waves detection using an unstabilized optical interferometer with uncalibrated phase shifts , 2015 .

[21]  Fei Gao,et al.  Phase stitching and error correction in aperture synthesis for generalized phase-shifting interferometry. , 2013, Applied optics.

[22]  John E. Greivenkamp,et al.  Generalized Data Reduction For Heterodyne Interferometry , 1984 .

[23]  J. C. Estrada,et al.  Robust adaptive phase-shifting demodulation for testing moving wavefronts. , 2013, Optics express.

[24]  Wolfgang Osten,et al.  Improvement of the regularized phase tracking technique for the processing of nonnormalized fringe patterns. , 2002, Applied optics.

[25]  Heung-No Lee,et al.  Speckle suppression via sparse representation for wide-field imaging through turbid media. , 2014, Optics express.

[26]  Sai Siva Gorthi,et al.  Fringe projection techniques: Whither we are? , 2010 .

[27]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[28]  Alejandro Federico,et al.  Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform. , 2009, Applied optics.

[29]  Pietro Ferraro,et al.  Fringe analysis for moiré interferometry by modification of the local intensity histogram and use of a two-dimensional Fourier transform method , 2000 .

[30]  Yan Zhao,et al.  3D fingerprint imaging system based on full-field fringe projection profilometry , 2014 .

[31]  Cruz Meneses-Fabian,et al.  Automatic real-time generalized phase-shifting interferometry to process interferograms with spatio-temporal visibility , 2013, Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications.

[32]  Qian Kemao,et al.  Windowed Fourier transform for fringe pattern analysis. , 2004, Applied optics.

[33]  Kun-Huang Chen,et al.  Heterodyne moiré interferometry for measuring corneal surface profile , 2014 .

[34]  Anssi J. Mäkynen,et al.  Recent advances in dental optics – Part II: Experimental tests for a new intraoral scanner , 2014 .

[35]  D J Bone,et al.  Fringe-pattern analysis using a 2-D Fourier transform. , 1986, Applied optics.

[36]  Song Zhang Recent progresses on real-time 3D shape measurement using digital fringe projection techniques , 2010 .

[37]  Mitsuo Takeda,et al.  Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review [Invited]. , 2013, Applied optics.

[38]  Cruz Meneses-Fabian,et al.  Phase-shifting interferometry by wave amplitude modulation. , 2011, Optics letters.

[39]  Jinhui Huang,et al.  A new reconstruction method based on fringe projection of three-dimensional measuring system , 2014 .

[40]  Huijie Zhao,et al.  Advanced optical measurement methods and its applications , 2014 .

[41]  J H Massig,et al.  Fringe-pattern analysis with high accuracy by use of the fourier-transform method: theory and experimental tests. , 2001, Applied optics.

[42]  Pramod Rastogi,et al.  Fringe analysis: Premise and perspectives , 2012 .

[43]  Qiaofeng Tan,et al.  Phase extraction from interferograms with unknown tilt phase shifts based on a regularized optical flow method. , 2013, Optics express.

[44]  Shengde Liu,et al.  Rapid phase demodulation for projection fringe profilometry , 2013 .

[45]  Thomas Kreis,et al.  Digital holographic interference-phase measurement using the Fourier-transform method , 1986 .

[46]  Noé Alcalá Ochoa,et al.  Normalization and noise-reduction algorithm for fringe patterns , 2007 .

[47]  C. J. Morgan Least-squares estimation in phase-measurement interferometry. , 1982, Optics letters.

[48]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[49]  Xiang Peng,et al.  A generalized temporal phase unwrapping algorithm for three-dimensional profilometry , 2008 .

[50]  Jiangtao Xi,et al.  Improving the accuracy performance of phase-shifting profilometry for the measurement of objects in motion. , 2014, Optics letters.

[51]  Matias R. Viotti,et al.  Use of Generalized N-dimensional Lissajous Figures for Phase Retrieval from Sequences of Interferometric Images with Unknown Phase Shifts , 2014 .

[52]  J A Quiroga,et al.  Adaptive monogenic filtering and normalization of ESPI fringe patterns. , 2005, Optics letters.

[53]  Juan Antonio Quiroga Mellado,et al.  Isotropic n-dimensional fringe pattern normalization , 2003 .

[54]  Yasuhiko Arai Spatial fringe analysis based on FFT using only two speckle pattern in ESPI , 2013, Optics & Photonics - Optical Engineering + Applications.

[55]  Wolfgang Osten,et al.  Analysis and removal of the systematic phase error in interferograms , 1994 .

[56]  Cruz Meneses-Fabian,et al.  Phase-shifting interferometry based on the lateral displacement of the light source. , 2013, Optics express.

[57]  K. Hibino,et al.  Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts , 1997 .

[58]  Bo-Seon Kang,et al.  Digital particle holographic system for measurements of spray field characteristics , 2011 .

[59]  Juan Antonio Quiroga Mellado,et al.  Algorithm for fringe pattern normalization , 2001 .

[60]  J M Huntley,et al.  Temporal phase unwrapping: application to surface profiling of discontinuous objects. , 1997, Applied optics.

[61]  Baozhen Ge,et al.  Elimination of zero-order diffraction in digital off-axis holography , 2004 .

[62]  K Andresen,et al.  Noise-free normalized fringe patterns and local pixel transforms for strain extraction. , 1996, Applied optics.

[63]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[64]  Lijun Deng,et al.  Numerical iterative approach for zero-order term elimination in off-axis digital holography. , 2013, Optics express.

[65]  Tongjing Zhu,et al.  Phase error analysis and compensation considering ambient light for phase measuring profilometry , 2014 .

[66]  L. Bruno,et al.  Phase-shifting interferometry by an open-loop voltage controlled laser diode , 2013 .

[67]  Giorgio Franceschetti,et al.  Global and local phase-unwrapping techniques: a comparison , 1997 .

[68]  He Xiaoyuan,et al.  Single fringe projection profilometry based on sinusoidal intensity normalization and subpixel fitting , 2011 .

[69]  Amalia Martínez-García,et al.  Analysis of the fringes visibility generated by a lateral cyclic shear interferometer in the retrieval of the three-dimensional surface information of an object , 2014 .

[70]  Pramod Rastogi,et al.  Moving ahead with phase , 2007 .

[71]  Salah Karout,et al.  Two-dimensional phase unwrapping , 2007 .

[72]  G. H. Kaufmann,et al.  Unwrapping of Digital Speckle-Pattern Interferometry Phase Maps by use of a Minimum L(0)-Norm Algorithm. , 1998, Applied optics.

[73]  Jie Li,et al.  An evaluation method for phase shift extraction algorithms in generalized phase-shifting interferometry , 2013 .

[74]  J. Marroquín,et al.  Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique. , 1997, Applied optics.

[75]  Hongwei Guo,et al.  Phase shift estimation from variances of fringe pattern differences. , 2013, Applied optics.