Extinction, decay and blow-up for Keller–Segel systems of fast diffusion type

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  N. Aronszajn,et al.  Theory of Bessel potentials. I , 1961 .

[3]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[4]  M. A. Herrero,et al.  The Cauchy problem for ut = Δu(m) when 0 , 1985 .

[5]  Miguel A. Herrero,et al.  The Cauchy problem for _{}=Δ^{} when 0<<1 , 1985 .

[6]  M. Nakao Global solutions for some nonlinear parabolic equations with nonmonotonic peturbations , 1986 .

[7]  Hideo Kozono,et al.  $L^1$-solutions of the Navier-Stokes equations in exterior domains , 1998 .

[8]  Victor A. Galaktionov,et al.  Asymptotics of the Fast-Diffusion Equation with Critical Exponent , 2000, SIAM J. Math. Anal..

[9]  Takayoshi Ogawa,et al.  Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type , 2003 .

[10]  Y. Sugiyama Global existence and decay properties of solutions for some degenerate quasilinear parabolic systems modelling chemotaxis , 2005 .

[11]  Yoshie Sugiyama,et al.  Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term , 2006 .

[12]  Y. Sugiyama Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems , 2006, Differential and Integral Equations.

[13]  J. Vázquez,et al.  Smoothing and decay estimates for nonlinear diffusion equations : equations of porous medium type , 2006 .

[14]  Yoshie Sugiyama,et al.  Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems , 2006 .

[15]  Y. Sugiyama Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis , 2007, Differential and Integral Equations.

[16]  Y. Sugiyama Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models , 2007, Advances in Differential Equations.

[17]  S. Luckhaus,et al.  Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases , 2007 .

[18]  Michael Winkler,et al.  Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .

[19]  Yoshie Sugiyama,et al.  On ε-Regularity Theorem and Asymptotic Behaviors of Solutions for Keller-Segel Systems , 2009, SIAM J. Math. Anal..

[20]  Y. Sugiyama ε-Regularity theorem and its application to the blow-up solutions of Keller-Segel systems in higher dimensions , 2010 .