A Polynomial Kernel for Trivially Perfect Editing

We give a kernel with \(O(k^7)\) vertices for Trivially Perfect Editing, the problem of adding or removing at most k edges in order to make a given graph trivially perfect. This answers in affirmative an open question posed by Nastos and Gao (Soc Netw 35(3):439–450, 2013), and by Liu et al. (Tsinghua Sci Technol 19(4):346–357, 2014). Our general technique implies also the existence of kernels of the same size for related Trivially Perfect Completion and Trivially Perfect Deletion problems. Whereas for the former an \(O(k^3)\) kernel was given by Guo (in: ISAAC 2007, LNCS, vol 4835, Springer, pp 915–926, 2007), for the latter no polynomial kernel was known. We complement our study of Trivially Perfect Editing by proving that, contrary to Trivially Perfect Completion, it cannot be solved in time \(2^{o(k)}\cdot n^{O(1)}\) unless the exponential time hypothesis fails. In this manner we complete the picture of the parameterized and kernelization complexity of the classic edge modification problems for the class of trivially perfect graphs.

[1]  Leizhen Cai,et al.  Incompressibility of H-Free Edge Modification , 2013, IPEC.

[2]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[3]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[4]  Federico Mancini,et al.  Graph modification problems related to graph classes , 2008 .

[5]  Yunlong Liu,et al.  Complexity and parameterized algorithms for Cograph Editing , 2012, Theor. Comput. Sci..

[6]  Michal Pilipczuk,et al.  Subexponential Parameterized Algorithm for Interval Completion , 2016, SODA.

[7]  Leizhen Cai,et al.  Incompressibility of $$H$$H-Free Edge Modification Problems , 2014, Algorithmica.

[8]  Noga Alon,et al.  Fast Fast , 2009, ICALP.

[9]  Mihalis Yannakakis,et al.  Edge-Deletion Problems , 1981, SIAM J. Comput..

[10]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[11]  Blair D. Sullivan,et al.  On the Threshold of Intractability , 2015, ESA.

[12]  Fahad Panolan,et al.  Faster Parameterized Algorithms for Deletion to Split Graphs , 2012, SWAT.

[13]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[14]  Jiong Guo,et al.  Problem Kernels for NP-Complete Edge Deletion Problems: Split and Related Graphs , 2007, ISAAC.

[15]  Pål Grønås Drange Parameterized Graph Modification Algorithms , 2015 .

[16]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[17]  Fahad Panolan,et al.  Faster Parameterized Algorithms for Deletion to Split Graphs , 2012, Algorithmica.

[18]  Fedor V. Fomin,et al.  A Polynomial Kernel for Proper Interval Vertex Deletion , 2013, SIAM J. Discret. Math..

[19]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[20]  Faisal N. Abu-Khzam Kernelization Algorithms for d-Hitting Set Problems , 2007, WADS.

[21]  Gerard J. Chang,et al.  Quasi-threshold Graphs , 1996, Discret. Appl. Math..

[22]  Charles J. Colbourn,et al.  The complexity of some edge deletion problems , 1988 .

[23]  Michal Pilipczuk,et al.  Tight bounds for parameterized complexity of Cluster Editing with a small number of clusters , 2014, J. Comput. Syst. Sci..

[24]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[25]  Faisal N. Abu-Khzam,et al.  A kernelization algorithm for d-Hitting Set , 2010, J. Comput. Syst. Sci..

[26]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[27]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs , 2004, SODA '04.

[28]  Fedor V. Fomin,et al.  Subexponential parameterized algorithm for minimum fill-in , 2011, SODA.

[29]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[30]  Michal Pilipczuk,et al.  Exploring Subexponential Parameterized Complexity of Completion Problems , 2013, STACS.

[31]  Stefan Kratsch,et al.  Two edge modification problems without polynomial kernels , 2009, Discret. Optim..

[32]  Wang Jian-xin,et al.  An Overview of Kernelization Algorithms for Graph Modification Problems , 2014 .

[33]  Fedor V. Fomin,et al.  Subexponential parameterized algorithm for interval completion , 2016, SODA 2016.

[34]  Yong Gao,et al.  Familial groups in social networks , 2013, Soc. Networks.

[35]  Christian Komusiewicz,et al.  Cluster editing with locally bounded modifications , 2012, Discret. Appl. Math..

[36]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[37]  Erik Jan van Leeuwen,et al.  Polynomial Kernelization for Removing Induced Claws and Diamonds , 2015, Theory of Computing Systems.

[38]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[39]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[40]  Michal Pilipczuk,et al.  Exploring the Subexponential Complexity of Completion Problems , 2015, TOCT.

[41]  Naveen Sivadasan,et al.  Parameterized lower bound and improved kernel for Diamond-free Edge Deletion , 2015, IPEC.

[42]  Flavia Bonomo,et al.  NP-completeness results for edge modification problems , 2006, Discret. Appl. Math..

[43]  Michal Pilipczuk,et al.  A Subexponential Parameterized Algorithm for Proper Interval Completion , 2014, ESA.

[44]  T. Gallai Transitiv orientierbare Graphen , 1967 .