Reanalysis of ribosome profiling datasets reveals a function of rocaglamide A in perturbing the dynamics of translation elongation via eIF4A

[1]  Xuerui Yang,et al.  Survey of the binding preferences of RNA-binding proteins to RNA editing events , 2022, Genome biology.

[2]  Zhengtao Xiao,et al.  De novo Identification of Actively Translated Open Reading Frames with Ribosome Profiling Data. , 2022, Journal of visualized experiments : JoVE.

[3]  Robert F. Harvey,et al.  Unresolved stalled ribosome complexes restrict cell-cycle progression after genotoxic stress , 2022, Molecular cell.

[4]  Shu-Bing Qian,et al.  Bi-directional ribosome scanning controls the stringency of start codon selection , 2021, Nature Communications.

[5]  Michael G Kearse,et al.  A double on the Rocs with a twist: Rocaglamide A targets multiple DEAD-box helicases to inhibit translation initiation. , 2021, Cell chemical biology.

[6]  R. Cencic,et al.  Eukaryotic Translation Initiation Factor 4AI: A Potential Novel Target in Neuroblastoma , 2021, Cells.

[7]  Haitao Zhao,et al.  Mutual dependency between lncRNA LETN and protein NPM1 in controlling the nucleolar structure and functions sustaining cell proliferation , 2021, Cell Research.

[8]  Wenfeng Qian,et al.  Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding , 2021, Genome biology.

[9]  Nicholas T. Ingolia,et al.  Dual targeting of DDX3 and eIF4A by the translation inhibitor rocaglamide A. , 2020, Cell chemical biology.

[10]  Christin Müller,et al.  The rocaglate CR-31-B (−) inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo , 2020, bioRxiv.

[11]  J. Mancias,et al.  Neurons Release Serine to Support mRNA Translation in Pancreatic Cancer , 2020, Cell.

[12]  Xin Liu,et al.  COPII mitigates ER stress by promoting formation of ER whorls , 2020, Cell Research.

[13]  S. Bekker-Jensen,et al.  Ribosomal stress-surveillance: three pathways is a magic number , 2020, Nucleic acids research.

[14]  N. Sonenberg,et al.  Identification and characterization of hippuristanol-resistant mutants reveals eIF4A1 dependencies within mRNA 5′ leader regions , 2020, Nucleic acids research.

[15]  A. Tiwari,et al.  Identification of Cardiac Glycosides as Novel Inhibitors of eIF4A1-Mediated Translation in Triple-Negative Breast Cancer Cells , 2020, Cancers.

[16]  Zhengtao Xiao,et al.  RiboMiner: a toolset for mining multi-dimensional features of the translatome with ribosome profiling data , 2020, BMC Bioinformatics.

[17]  Shu-Bing Qian,et al.  Nutrient Control of mRNA Translation. , 2020, Annual review of nutrition.

[18]  R. Green,et al.  Ribosome Collisions Trigger General Stress Responses to Regulate Cell Fate , 2020, Cell.

[19]  Onn Brandman,et al.  Detection and Degradation of Stalled Nascent Chains via Ribosome-Associated Quality Control. , 2020, Annual review of biochemistry.

[20]  R. Hegde,et al.  The ASC-1 Complex Disassembles Collided Ribosomes , 2020, Molecular cell.

[21]  P. A. Thompson,et al.  Design of Development Candidate eFT226, a First in Class Inhibitor of Eukaryotic Initiation Factor 4A RNA Helicase. , 2020, Journal of medicinal chemistry.

[22]  N. Guydosh,et al.  Disome and Trisome Profiling Reveal Genome-wide Targets of Ribosome Quality Control. , 2020, Molecular cell.

[23]  Dorte B. Bekker-Jensen,et al.  ZAKα Recognizes Stalled Ribosomes through Partially Redundant Sensor Domains. , 2020, Molecular cell.

[24]  Patrick B. F. O'Connor,et al.  Rocaglates Induce Gain-of-Function Alterations to eIF4A and eIF4F , 2020, Cell reports.

[25]  T. Inada Quality controls induced by aberrant translation , 2020, Nucleic acids research.

[26]  J. Hartman,et al.  Slowing ribosome velocity restores folding and function of mutant CFTR. , 2019, The Journal of clinical investigation.

[27]  Hani S. Zaher,et al.  A short translational ramp determines the efficiency of protein synthesis , 2019, Nature Communications.

[28]  D. Gatfield,et al.  Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing , 2019, bioRxiv.

[29]  Yuichiro Mishima,et al.  Genome-wide survey of ribosome collision , 2019, bioRxiv.

[30]  Haitao Zhao,et al.  Survey of the translation shifts in hepatocellular carcinoma with ribosome profiling , 2019, Theranostics.

[31]  Z. Ignatova,et al.  eIF3 associates with 80S ribosomes to promote translation elongation, mitochondrial homeostasis, and muscle health , 2019, bioRxiv.

[32]  K. Fu,et al.  Targeting Translation Initiation by Synthetic Rocaglates for Treating MYC-driven Lymphomas , 2019, Leukemia.

[33]  Olga Tanaseichuk,et al.  Metascape provides a biologist-oriented resource for the analysis of systems-level datasets , 2019, Nature Communications.

[34]  B. Manning,et al.  Molecular logic of mTORC1 signalling as a metabolic rheostat , 2019, Nature Metabolism.

[35]  Shintaro Iwasaki,et al.  The Translation Inhibitor Rocaglamide Targets a Bimolecular Cavity between eIF4A and Polypurine RNA. , 2019, Molecular cell.

[36]  C. Goding,et al.  Starvation and Pseudo-Starvation as Drivers of Cancer Metastasis through Translation Reprogramming. , 2019, Cell metabolism.

[37]  M. Zavolan,et al.  Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates , 2018, Proceedings of the National Academy of Sciences.

[38]  Jeffrey A. Hussmann,et al.  Ribosome Profiling: Global Views of Translation. , 2018, Cold Spring Harbor perspectives in biology.

[39]  S. Thompson,et al.  Noncanonical Translation Initiation in Eukaryotes. , 2018, Cold Spring Harbor perspectives in biology.

[40]  G. Atkinson,et al.  Ribosome profiling analysis of eEF3-depleted Saccharomyces cerevisiae , 2018, bioRxiv.

[41]  Shiguo Zhu,et al.  Rocaglamide enhances NK cell-mediated killing of non-small cell lung cancer cells by inhibiting autophagy , 2018, Autophagy.

[42]  C. Proud Phosphorylation and Signal Transduction Pathways in Translational Control. , 2018, Cold Spring Harbor perspectives in biology.

[43]  J. F. Atkins,et al.  Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing. , 2018, Molecular cell.

[44]  C. Joazeiro Ribosomal Stalling During Translation: Providing Substrates for Ribosome-Associated Protein Quality Control. , 2017, Annual review of cell and developmental biology.

[45]  Jianyang Zeng,et al.  Analysis of Ribosome Stalling and Translation Elongation Dynamics by Deep Learning. , 2017, Cell systems.

[46]  Y. Vainshtein,et al.  Profiling Ssb-Nascent Chain Interactions Reveals Principles of Hsp70-Assisted Folding , 2017, Cell.

[47]  G. Menschaert,et al.  eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs , 2017, Nucleic Acids Research.

[48]  Xuerui Yang,et al.  De novo annotation and characterization of the translatome with ribosome profiling data , 2017, bioRxiv.

[49]  J. Bradner,et al.  Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma , 2017, Science Translational Medicine.

[50]  R. Green,et al.  eIF5A Functions Globally in Translation Elongation and Termination. , 2017, Molecular cell.

[51]  D. Sabatini,et al.  mTOR Signaling in Growth, Metabolism, and Disease , 2017, Cell.

[52]  J. Doudna,et al.  Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain , 2017, PLoS biology.

[53]  Sarah C. Ayling,et al.  The Ensembl gene annotation system , 2016, Database J. Biol. Databases Curation.

[54]  Nicholas T. Ingolia,et al.  Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor , 2016, Nature.

[55]  Xuerui Yang,et al.  Genome-wide assessment of differential translations with ribosome profiling data , 2016, Nature Communications.

[56]  J. Pelletier,et al.  nanoCAGE reveals 5′ UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs , 2016, Genome research.

[57]  Fengbo Tan,et al.  Chinese herb derived-Rocaglamide A is a potent inhibitor of pancreatic cancer cells. , 2016, American journal of translational research.

[58]  Oliver Bembom,et al.  Sequence logos for DNA sequence alignments , 2016 .

[59]  M. Li‐Weber Molecular mechanisms and anti‐cancer aspects of the medicinal phytochemicals rocaglamides (=flavaglines) , 2015, International journal of cancer.

[60]  B. Viollet,et al.  Translational tolerance of mitochondrial genes to metabolic energy stress involves TISU and eIF1-eIF4GI cooperation in start codon selection. , 2015, Cell metabolism.

[61]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[62]  Konstantinos J. Mavrakis,et al.  RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer , 2014, Nature.

[63]  M. Boerries,et al.  The natural anticancer compound rocaglamide selectively inhibits the G1‐S‐phase transition in cancer cells through the ATM/ATR‐mediated Chk1/2 cell cycle checkpoints , 2014, International journal of cancer.

[64]  M. Grever,et al.  Flavaglines target primitive leukemia cells and enhance anti-leukemia drug activity , 2014, Leukemia.

[65]  Nicholas T. Ingolia Ribosome profiling: new views of translation, from single codons to genome scale , 2014, Nature Reviews Genetics.

[66]  Michael S. Becker,et al.  The traditional Chinese medical compound Rocaglamide protects nonmalignant primary cells from DNA damage-induced toxicity by inhibition of p53 expression , 2014, Cell Death and Disease.

[67]  Aravind Subramanian,et al.  Tight Coordination of Protein Translation and HSF1 Activation Supports the Anabolic Malignant State , 2013, Science.

[68]  J. Plotkin,et al.  Rate-Limiting Steps in Yeast Protein Translation , 2013, Cell.

[69]  L. Hurst,et al.  Positively Charged Residues Are the Major Determinants of Ribosomal Velocity , 2013, PLoS biology.

[70]  Shu-Bing Qian,et al.  Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. , 2013, Molecular cell.

[71]  C. Burge,et al.  Widespread regulation of translation by elongation pausing in heat shock , 2013, Molecular cell.

[72]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[73]  V. Gladyshev,et al.  Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress , 2012, Proceedings of the National Academy of Sciences.

[74]  T. Inada,et al.  Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3' end of aberrant mRNA. , 2012, Molecular cell.

[75]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[76]  D. Sabatini,et al.  A unifying model for mTORC1-mediated regulation of mRNA translation , 2012, Nature.

[77]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[78]  Nicholas T. Ingolia,et al.  The translational landscape of mTOR signalling steers cancer initiation and metastasis , 2012, Nature.

[79]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[80]  N. Sonenberg,et al.  Unique translation initiation of mRNAs-containing TISU element , 2011, Nucleic acids research.

[81]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[82]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[83]  R. Cencic,et al.  Antitumor Activity and Mechanism of Action of the Cyclopenta[b]benzofuran, Silvestrol , 2009, PloS one.

[84]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[85]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[86]  R. Dikstein,et al.  A Translation Initiation Element Specific to mRNAs with Very Short 5′UTR that Also Regulates Transcription , 2008, PloS one.

[87]  S. Lowe,et al.  Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. , 2008, The Journal of clinical investigation.

[88]  P. Krammer,et al.  The traditional Chinese herbal compound rocaglamide preferentially induces apoptosis in leukemia cells by modulation of mitogen‐activated protein kinase activities , 2007, International journal of cancer.

[89]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[90]  M. Ochiai,et al.  X-Ray crystal structure of rocaglamide, a novel antileulemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia , 1982 .

[91]  JoVE Video Dataset , 2022 .