Plasmonic hot electron induced layer dependent anomalous Fröhlich interaction in InSe

[1]  D. Zahn,et al.  Fine-tuning of localized surface plasmon resonance of metal nanostructures from near-Infrared to blue prepared by nanosphere lithography , 2020, Journal of Applied Physics.

[2]  A. Shukla,et al.  Ultrafast dynamics of hot carriers in a quasi–two-dimensional electron gas on InSe , 2020, Proceedings of the National Academy of Sciences.

[3]  Xiaobing Luo,et al.  Examining two-dimensional Fröhlich model and enhancing the electron mobility of monolayer InSe by dielectric engineering , 2020 .

[4]  Hyunseok Kim,et al.  Enhanced Optical Emission from 2D InSe Bent onto Si‐Pillars , 2020, Advanced Optical Materials.

[5]  A. Ferrari,et al.  Raman spectroscopy of GaSe and InSe post-transition metal chalcogenides layers. , 2020, Faraday discussions.

[6]  Jianlin Zhao,et al.  Au-InSe van der Waals Schottky junctions with ultralow reverse current and high photosensitivity. , 2020, Nanoscale.

[7]  M. Katsnelson,et al.  Strong Electron-Phonon Coupling and its Influence on the Transport and Optical Properties of Hole-Doped Single-Layer InSe. , 2019, Physical review letters.

[8]  R. Sankar,et al.  Thickness-Dependent Resonant Raman and E′ Photoluminescence Spectra of Indium Selenide and Indium Selenide/Graphene Heterostructures , 2019, The Journal of Physical Chemistry C.

[9]  Y. Chai,et al.  Phase Identification and Strong Second Harmonic Generation in Pure ε-InSe and Its Alloys. , 2019, Nano letters.

[10]  S. Poncé,et al.  Dimensional Crossover in the Carrier Mobility of Two-Dimensional Semiconductors: The Case of InSe. , 2019, Nano letters.

[11]  S. Haigh,et al.  Indirect to Direct Gap Crossover in Two-Dimensional InSe Revealed by Angle-Resolved Photoemission Spectroscopy. , 2019, ACS nano.

[12]  Saptarshi Das,et al.  Contact engineering for 2D materials and devices. , 2018, Chemical Society reviews.

[13]  Yuanhui Sun,et al.  InSe: a two-dimensional material with strong interlayer coupling. , 2018, Nanoscale.

[14]  L. Weston,et al.  Monolayer to Bulk Properties of Hexagonal Boron Nitride , 2018, The Journal of Physical Chemistry C.

[15]  D. Zahn,et al.  Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays. , 2018, Nanoscale.

[16]  Shenyang Huang,et al.  Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain. , 2017, ACS Applied Materials and Interfaces.

[17]  Yong Wang,et al.  Band alignment of two-dimensional metal monochalcogenides MXs (M=Ga,In; X=S,Se,Te) , 2017 .

[18]  Jinlan Wang,et al.  Oxidation Mechanism and Protection Strategy of Ultrathin Indium Selenide: Insight from Theory. , 2017, The journal of physical chemistry letters.

[19]  P. Hu,et al.  Atomically thin InSe: A high mobility two-dimensional material , 2017 .

[20]  K. Novoselov,et al.  High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. , 2016, Nature nanotechnology.

[21]  Xiangshan Chen,et al.  The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals , 2016, Scientific Reports.

[22]  M. Calandra,et al.  Two-dimensional Fröhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations , 2016, 1605.08207.

[23]  P. Ordejón,et al.  Nanotexturing To Enhance Photoluminescent Response of Atomically Thin Indium Selenide with Highly Tunable Band Gap. , 2016, Nano letters.

[24]  D. Norris,et al.  Plasmonic Films Can Easily Be Better: Rules and Recipes , 2015, ACS photonics.

[25]  Andres Castellanos-Gomez,et al.  Environmental instability of few-layer black phosphorus , 2014, 1410.2608.

[26]  W. Cao,et al.  Back Gated Multilayer InSe Transistors with Enhanced Carrier Mobilities via the Suppression of Carrier Scattering from a Dielectric Interface , 2014, Advanced materials.

[27]  B. Gerardot,et al.  Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes , 2014, Nano Research.

[28]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[29]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[30]  P. Ajayan,et al.  Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. , 2014, ACS nano.

[31]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[32]  Zongwen Liu,et al.  Large-scale synthesis of hexagonal corundum-type In2O3 by ball milling with enhanced lithium storage capabilities , 2013 .

[33]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[34]  S. Adachi The Handbook on Optical Constants of Semiconductors:In Tables and Figures , 2012 .

[35]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[36]  W. A. Murray,et al.  Overlayers on silver nanotriangles: Field confinement and spectral position of localized surface plasmon resonances. , 2006, Nano letters.

[37]  George C. Schatz,et al.  Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles , 2001 .

[38]  Julien,et al.  Resonant Raman scattering in quasi-two-dimensional InSe near the M0 and M1 critical points. , 1991, Physical review. B, Condensed matter.

[39]  Shinozaki,et al.  Raman scattering from coupled plasmon-LO-phonon modes in n-type AlxGa1-xAs. , 1986, Physical review. B, Condensed matter.

[40]  Y. Nishina,et al.  Resonant Raman scattering at higher M0 exciton edge in layer compound InSe , 1978 .

[41]  E. A. Vinogradov,et al.  Infrared and Raman Spectra of Layer InSe Single Crystals , 1978 .

[42]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[43]  R. Martin Theory of the One-Phonon Resonance Raman Effect , 1971 .

[44]  B. B. Varga,et al.  Coupling of Plasmons to Polar Phonons in Degenerate Semiconductors , 1965 .

[45]  H. Fröhlich Electrons in lattice fields , 1954 .